首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In the crystal structure of the title compound, [Cu3Cl6(C4H6N4)4]n, there are three Cu atoms, six Cl atoms and four 2‐allyl­tetrazole ligands in the asymmetric unit. The polyhedron of one Cu atom adopts a flattened octahedral geometry, with two 2‐allyl­tetrazole ligands in the axial positions [Cu—N4 = 1.990 (2) and 1.991 (2) Å] and four Cl atoms in the equatorial positions [Cu—Cl = 2.4331 (9)–2.5426 (9) Å]. The polyhedra of the other two Cu atoms have a square‐pyramidal geometry, with three basal sites occupied by Cl atoms [Cu—Cl = 2.2487 (9)–2.3163 (8) and 2.2569 (9)–2.3034 (9) Å] and one basal site occupied by a 2‐allyl­tetrazole ligand [Cu—N4 = 2.028 (2) and 2.013 (2) Å]. A Cl atom lies in the apical position of either pyramid [Cu—Cl = 2.8360 (10) and 2.8046 (9) Å]. The possibility of including the tetrazole N3 atoms in the coordination sphere of the two Cu atoms is discussed. Neighbouring copper polyhedra share their edges with Cl atoms to form one‐dimensional polymeric chains running along the a axis.  相似文献   

2.
Two new layered complexes with the formulas of {[Cu(H2O)(HL)2Cl](NO3)}n ( 1 ) and {[Cu(H2O)2(HL)2](NO3)2}n ( 2 ) were solvothermally synthesized by the reactions of the bulky conjugated 4′‐(4‐hydroxyphenyl)‐4,2′:6′,4′′‐terpyridine ligand (HL) with different CuII salts, which were further used as photocatalysts to achieve hydrogen production from water splitting. Single‐crystal structural analyses reveal that both complexes feature coplanar (4 4) layers with different connection manners between the HL extended Z‐shaped chains. More interestingly, 1 possessing more negative conduction band potential and higher structural stability exhibits a large hydrogen production rate of 2.43 mmol · g–1 · h–1, which is four times higher than that of 2 . Thus, the CuII‐based coordination polymers modified by the bulky conjugated organic ligand can become potentially promising non‐Pt photocatalysts for hydrogen production from water splitting.  相似文献   

3.
The crystal structure of the title basic copper(II) sulfate, {(C5H7N2)[Cu2(OH)(SO4)2(H2O)2]}n, shows an unprecedented structural arrangement of two distinct copper centres. CuO6 and CuO5 polyhedra are linked through bridging hydroxide and sulfate anions to form negatively charged infinite chains propagated along the a axis. The negative charge is balanced by 3‐aminopyridinium cations that are held in the structure by extensive hydrogen bonding to the inorganic chains. Additionally, the cationic arrangement features π–π stacking.  相似文献   

4.
The compound [Cu42‐OH)23‐OH)2Cl2(bipy)4]Cl2 · 6H2O ( 1 ) was obtained by recrystallization of [Cu(HB)2(2, 2′‐bipy)] · H2O (H2B = diphenylglycolic acid) from EtOH/CH2Cl2 and their structure has been determined by single‐crystal X‐ray analysis. The cationic complex may be described as based on a Cu4(OH)4 core with a “stepped cubane” structure. The coordination polyhedron around each copper is a distorted square pyramid. The tetranuclear units are linked in the crystal by C‐H…Cl hydrogen bonds and by π‐π interactions between bipyridine rings. IR data are also presented.  相似文献   

5.
A novel centrosymmetric chair‐like dimer, bis(2,2′‐bi­pyridine)‐1κ2N,N′;3κ2N,N′‐tetra‐μ‐chloro‐1:2κ2Cl;­2:3κ2Cl;­3:4κ2Cl;1:4κ2Cl‐tetra­copper(I), [Cu4Cl4­(C10­H8­N2)2], has been solvothermally synthesized and structurally characterized. The complex self‐assembles into a three‐dimensional network via C—H?Cl hydrogen bonds, π–π stacking and weak Cu?Cl electrostatic interactions.  相似文献   

6.
In the polymeric title compound, [CuCl2(C6H6N4)]n, each CuII ion is five‐coordinated by four basal atoms (two N atoms from a 2,2′‐biimidazole mol­ecule and two Cl anions) and one axial Cl anion, in a distorted square‐pyramidal coordination geometry. Cl anions bridge the {Cu(C6H6N4)Cl} units into one‐dimensional linear chains, which are reinforced by π–π inter­actions. Adjacent linear chains are linked by N—H⋯Cl hydrogen bonds, resulting in a grid layer. The hydrogen‐bonding pattern can be described in graph‐set notation as C(9)R(9)R(14). This study extends our knowledge of the multifunctional properties of the 2,2′‐biimidazole ligand and of the coordination stereochemistry of copper(II).  相似文献   

7.
The title compound, [Cu2(SO4)2(C10H8N2)2(C2H6O2)2(H2O)2]n, contains two crystallographically unique CuII centres, each lying on a twofold axis and having a slightly distorted octahedral environment. One CuII centre is coordinated by two bridging 4,4′‐bipyridine (4,4′‐bipy) ligands, two sulfate anions and two aqua ligands. The second is surrounded by two 4,4′‐bipy N atoms and four O atoms, two from bridging sulfate anions and two from ethane‐1,2‐diol ligands. The sulfate anion bridges adjacent CuII centres, leading to the formation of linear ...Cu1–Cu2–Cu1–Cu2... chains. Adjacent chains are further bridged by 4,4′‐bipy ligands, which are also located on the twofold axis, resulting in a two‐dimensional layered polymer. In the crystal structure, extensive O—H...O hydrogen‐bonding interactions between water molecules, ethane‐1,2‐diol molecules and sulfate anions lead to the formation of a three‐dimensional supramolecular network structure.  相似文献   

8.
The crystal structure of the title complex, {[Cu3(C2H3O2)2(OH)2(H2O)4](C10H6O6S2)}n, is built of infinite polymeric cationic {[Cu3(C2H3O2)2(H2O)4(OH)2]2+}n chains stretching along the a axis, with naphthalene‐1,5‐disulfonate (1,5‐nds) anions in between. One independent CuII cation and the 1,5‐nds anion occupy special positions on crystallographic inversion centres. Each CuII cation has an octa­hedral coordination environment formed by two carboxyl O atoms, two hydroxo O atoms and two water mol­ecules. The carboxyl­ate and hydroxo groups perform a bridging function, linking adjacent Cu atoms in the chain, with a shortest Cu⋯Cu distance of 2.990 (3) Å. The chains are further linked into a three‐dimensional supra­molecular framework via hydrogen‐bonding inter­actions involving the sulfonate groups of the 1,5‐­nds dianions.  相似文献   

9.
The two title dinuclear copper(II) complexes, [Cu2Cl4(C17H20Cl2N2)2], (I), and [Cu2Cl4(C19H22N2O4)2], (II), have similar coordination environments. In each complex, the asymmetric unit consists of one half‐molecule and the two copper centres are bridged by a pair of Cl atoms, resulting in complexes with centrosymmetric structures containing Cu(μ‐Cl)2Cu parallelogram cores; the Cu...Cu separations and Cu—Cl—Cu angles are 3.4285 (8) Å and 83.36 (3)°, respectively, for (I), and 3.565 (2) Å and 84.39 (7)° for (II). Each Cu atom is five‐coordinated and the coordination geometry around the Cu atom is best described as a distorted square‐pyramid with a τ value of 0.155 (3) for (I) and 0.092 (7) for (II). The apical Cu—Cl bond length is 2.852 (1) Å for (I) and 2.971 (2) Å for (II). The basal Cu—Cl and Cu—N average bonds lengths are 2.2673 (9) and 2.030 (2) Å, respectively, for (I), and 2.280 (2) and 2.038 (6) Å for (II). The molecules of (I) are linked by one C—H...Cl hydrogen bond into a complex [10] sheet. The molecules of (II) are linked by one C—H...Cl and one N—H...O hydrogen bond into a complex [100] sheet.  相似文献   

10.
The precise alignment of multiple layers of metal–organic framework (MOF) thin films, or MOF‐on‐MOF films, over macroscopic length scales is presented. The MOF‐on‐MOF films are fabricated by epitaxially matching the interface. The first MOF layer (Cu2(BPDC)2, BPDC=biphenyl‐4,4′‐dicarboxylate) is grown on an oriented Cu(OH)2 film by a “one‐pot” approach. Aligned second (Cu2(BDC)2, BDC=benzene 1,4‐dicarboxylate, or Cu2(BPYDC)2, BPYDC=2,2′‐bipyridine‐5,5′‐dicarboxylate) MOF layers can be deposited using liquid‐phase epitaxy. The co‐orientation of the MOF films is confirmed by X‐ray diffraction. Importantly, our strategy allows for the synthesis of aligned MOF films, for example, Cu2(BPYDC)2, that cannot be grown on a Cu(OH)2 surface. We show that aligned MOF films furnished with Ag nanoparticles show a unique anisotropic plasmon resonance. Our MOF‐on‐MOF approach expands the chemistry of heteroepitaxially oriented MOF films and provides a new toolbox for multifunctional porous coatings.  相似文献   

11.
The title compound, a hydrothermally synthesized strontium copper(II) phosphate(V) (2.88/3.12/4), is isotypic with Sr3Cu3(PO4)4, obtained previously by solid‐state reaction, but not with Sr3Cu3(PO4)4, obtained previously by the hydrothermal method. A surplus of copper was observed by both structural and chemical analysis, and the formula obtained by the structural analysis is in full agreement with results of the EDX (energy‐dispersive X‐ray diffraction) analysis. The structure consists of layers of Cu3O12 groups which are linked via the PO4 tetrahedra. The Cu3O12 groups are formed by one Cu1O4 and two Cu2O5 coordination polyhedra sharing corners. The central Cu1 atom of the Cu3O12 group is located at an inversion centre (special position 2a). The unique structural feature of the title compound is the presence of 12% Cu in the Sr1 site (special position 2b, site symmetry ). Moreover, disordered Sr2 atoms were observed: a main site (Sr2a, 90%) and a less occupied site (Sr2b, 10%) are displaced by 0.48 (3) Å along the b axis. Such substitutional and positional disorder was not observed previously in similar compounds.  相似文献   

12.
The visible absorption spectrum of the water soluble polynuclear metallamacrocyclic LaIII‐CuII complex La(H2O)3[15‐MCCu(II)Phalaha‐5](Cl)3 ( 1 ) based on α‐phenylalaninehydroxamic acid appears to be solvent‐ and ion‐sensitive. The copper(II) d–d transitions of the complex 1 dissolved in methanol, ethanol, water, dimethylformamide, dimethylsulfoxide, pyridine, and N‐methylpyrrolidone were studied. The chromophoric behavior of complex 1 was investigated in the presence of the Cl, Br, I, HSO4, CO32–, HCO3, H2PO4, CN, SCN, and N3 anions. A considerable change of the d–d transition of the central copper(II) atom was observed for the strongly coordinating cyanide and azide anions. In the presence of HSO4, the d–d intensity of copper(II) also decreased significantly. The molecular structure of La2(H2O)7[15‐MCCu(II)Phalaha‐5]2(SO4)4 ( 2 ), obtained as result of the substitution of the coordinated water molecules in 1 by the SO42– anions, was investigated by X‐ray crystallography.  相似文献   

13.
The novel polymeric complexes catena‐poly[[diaquamanganese(II)]‐μ‐2,2′‐bipyrimidine‐κ4N1,N1′:N3,N3′‐[diaquamanganese(II)]‐bis(μ‐terephthalato‐κ2O1:O4)], [Mn2(C8H4O4)2(C8H6N4)(H2O)4]n, (I), and catena‐poly[[[aquacopper(II)]‐μ‐aqua‐μ‐hydroxido‐μ‐terephthalato‐κ2O1:O1′‐copper(II)‐μ‐aqua‐μ‐hydroxido‐μ‐terephthalato‐κ2O1:O1′‐[aquacopper(II)]‐μ‐2,2′‐bipyrimidine‐κ4N1,N1′:N3,N3′] tetrahydrate], {[Cu3(C8H4O4)2(OH)2(C8H6N4)(H2O)4]·4H2O}n, (II), containing bridging 2,2′‐bipyrimidine (bpym) ligands coordinated as bis‐chelates, have been prepared via a ligand‐exchange reaction. In both cases, quite unusual coordination modes of the terephthalate (tpht2−) anions were found. In (I), two tpht2− anions acting as bis‐monodentate ligands bridge the MnII centres in a parallel fashion. In (II), the tpht2− anions act as endo‐bridges and connect two CuII centres in combination with additional aqua and hydroxide bridges. In this way, the binuclear [Mn2(tpht)2(bpym)(H2O)4] entity in (I) and the trinuclear [Cu3(tpht)2(OH)2(bpym)(H2O)4]·4H2O coordination entity in (II) build up one‐dimensional polymeric chains along the b axis. In (I), the MnII cation lies on a twofold axis, whereas the four central C atoms of the bpym ligand are located on a mirror plane. In (II), the central CuII cation is also on a special position (site symmetry ). In the crystal structures, the packing of the chains is further strengthened by a system of hydrogen bonds [in both (I) and (II)] and weak face‐to‐face π–π interactions [in (I)], forming three‐dimensional metal–organic frameworks. The MnII cation in (I) has a trigonally deformed octahedral geometry, whereas the CuII cations in (II) are in distorted octahedral environments. The CuII polyhedra are inclined relative to each other and share common edges.  相似文献   

14.
The blue tetranuclear CuII complexes {[Cu(bpy)(OH)]4Cl2}Cl2 · 6 H2O ( 1 ) and {[Cu(phen)(OH)]4(H2O)2}Cl4 · 4 H2O ( 2 ) were synthesized and characterized by single crystal X‐ray diffraction. ( 1 ): P 1 (no. 2), a = 9.240(1) Å, b = 10.366(2) Å, c = 12.973(2) Å, α = 85.76(1)°, β = 75.94(1)°, γ = 72.94(1)°, V = 1152.2(4) Å3, Z = 1; ( 2 ): P 1 (no. 2), a = 9.770(3) Å, b = 10.118(3) Å, c = 14.258(4) Å, α = 83.72(2)°, β = 70.31(1)°, γ = 70.63(1)°, V = 1252.0(9) Å3, Z = 1. The building units are centrosymmetric tetranuclear {[Cu(bpy)(OH)]4Cl2}2+ and {[Cu(phen)(OH)]4(H2O)2}4+ complex cations formed by condensation of four elongated square pyramids CuN2(OH)2Lap with the apical ligands Lap = Cl, H2O, OH. The resulting [Cu42‐OH)23‐OH)2] core has the shape of a zigzag band of three Cu2(OH)2 squares. The cations exhibit intramolecular and intermolecular π‐π stacking interactions and the latter form 2D layers with the non‐bonded Cl anions and H2O molecules in between (bond lengths: Cu–N = 1.995–2.038 Å; Cu–O = 1.927–1.982 Å; Cu–Clap = 2.563; Cu–Oap(OH) = 2.334–2.369 Å; Cu–Oap(H2O) = 2.256 Å). The Cu…Cu distances of about 2.93 Å do not indicate direct interactions, but the strongly reduced magnetic moment of about 2.74 B.M. corresponds with only two unpaired electrons per formula unit of 1 (1.37 B.M./Cu) and obviously results from intramolecular spin couplings (χm(T‐θ) = 0.933 cm3 · mol–1 · K with θ = –0.7 K).  相似文献   

15.
The title complex, {[Cu2(C14H16N3O4)(C6H6N4S2)]NO3·0.6H2O}n, is a one‐dimensional copper(II) coordination polymer bridged by cis‐oxamide and carboxylate groups. The asymmetric unit is composed of a dinuclear copper(II) cation, [Cu2(dmapob)(dabt)]+ {dmapob is N‐(2‐carboxylatophenyl)‐N′‐[3‐(dimethylamino)propyl]oxamidate and dabt is 2,2′‐diamino‐4,4′‐bithiazole}, one nitrate anion and one partially occupied site for a solvent water molecule. The two CuII ions are located in square‐planar and square‐pyramidal coordination environments, respectively. The separations of the Cu atoms bridged by oxamide and carboxylate groups are 5.2053 (3) and 5.0971 (4) Å, respectively. The complex chains are linked by classical hydrogen bonds to form a layer and then assembled by π–π stacking interactions into a three‐dimensional network. The influence of the terminal ligand on the structure of the complex is discussed.  相似文献   

16.
The novel title complex, {[Cu3(C8H3NO6)2(OH)2(H2O)6]·2H2O}n, has a one‐dimensional polymeric double chain structure where the three Cu atoms are linked by μ2‐OH and μ2‐H2O groups, and these trinuclear centres are bridged by two 3‐nitrophthalate ligands. The asymmetric unit contains one and a half crystallographically independent Cu atoms (one lying on a centre of inversion), both coordinated by six O atoms and exhibiting distorted octahedral coordination geometries, but with different coordination environments. Each 3‐nitrophthalate ligand connects to three Cu atoms through two O atoms of one carboxylate group and one O atom of the nitro group. The remaining carboxylate group is free and is involved in intrachain hydrogen bonds, reinforcing the chain linkage.  相似文献   

17.
The synthesis and crystal structure elucidation of a novel dinuclear heteroleptic copper(II) complex has led to an alternative mechanism in the formation of covalent hydrates. During further studies on the synthesis and properties of [Cu2(ophen)2] ( 1 ), a dinuclear complex of copper(I) with 1 H‐[1,10]‐phenanthrolin‐2‐one (Hophen), two intermediates/alternative products 2 and 3 were isolated. The dinuclear, antiferromagnetic complex [Cu2(ophen)2(phen)2] ? (NO3)2 ? 9H2O ( 3 , phen=1,10‐phenanthroline) contains two five‐coordinate copper(II) ions, both with trigonal‐bipyramidal coordination, which are bridged together through deprotonated hydroxyl groups with a Cu? Cu non‐bonding distance of 3.100 Å. Complex [Cu(phen)2(H2O)] ? (NO3)2 ( 2 ) is a polymorph of a previously reported material. The occurrence of 2 and 3 has led us to propose a variation to the Gillard mechanism for the formation of covalent hydrates in bidentate N‐heterocycles in which the attacking nucleophile may be the deprotonated form of 2 , [Cu(phen)2(OH)]?, rather than free OH?.  相似文献   

18.
The title compound, [Cu2(C9H10NO3)2(NO3)2(C10H8N2)(H2O)2]n, contains CuII atoms and l ‐tyrosinate (l ‐tyr) and 4,4′‐bipyridine (4,4′‐bipy) ligands in a 2:2:1 ratio. Each Cu atom is coordinated by one amino N atom and two carboxylate O atoms from two l ‐tyr ligands, one N atom from a 4,4′‐bipy ligand, a monodentate nitrate ion and a water molecule in an elongated octahedral geometry. Adjacent Cu atoms are bridged by the bidentate carboxylate groups into a chain. These chains are further linked by the bridging 4,4′‐bipy ligands, forming an undulated chiral two‐dimensional sheet. O—H...O and N—H...O hydrogen bonds connect the sheets in the [100] direction. This study offers useful information for the engineering of chiral coordination polymers with amino acids and 4,4′‐bipy ligands by considering the ratios of the metal ion and organic components.  相似文献   

19.
The title compund, [Cu2(OH)2(C22H25N3)2](ClO4)2, is a copper(II) dimer, with two [CuL]2+ units [L is bis(6‐methyl‐2‐pyridylmethyl)(2‐phenylethyl)amine] bridged by hydroxide groups to define the {[CuL](μ‐OH)2[CuL]}2+ cation. Charge balance is provided by perchlorate counter‐anions. The cation has a crystallographic inversion centre halfway between the CuII ions, which are separated by 3.0161 (8) Å. The central core of the cation is an almost regular Cu2O2 parallelogram of sides 1.931 (2) and 1.935 (2) Å, with a Cu—O—Cu angle of 102.55 (11)°. The coordination geometry around each CuII centre can be best described as a square‐based pyramid, with three N atoms from L ligands and two hydroxide O atoms completing the coordination environment. Each cationic unit is hydrogen bonded to two perchlorate anions by means of hydroxide–perchlorate O—H...O interactions.  相似文献   

20.
The present structure determination of di‐μ‐hydroxo‐bis{[N,N′‐bis­(dipiperidino­methyl­ene)­propane‐1,3‐di­amine‐κ2N,N′]copper(II)} bis­(hexa­fluoro­phosphate), [Cu2(OH)2(C25H46N6)2](PF6)2, is the first to crystallographically characterize a Cu2(μ‐OH)2 complex with a bidentate guanidine ligand. The cation lies on a crystallographic inversion centre and shows planar fourfold coordination of the copper centres. The Cu2(μ‐OH)2 species can be distinguished from Cu2(μ‐O)2 by the Cu—O bond lengths. The packing is determined by strong intermolecular anion–cation hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号