首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four Ln(III) complexes based on a new nitronyl nitroxide radical have been synthesized and structurally characterized: {Ln(hfac)3[NITPh(MeO)2]2} (Ln = Eu( 1 ), Gd( 2 ), Tb( 3 ), Dy( 4 ); NITPh(MeO)2 = 2‐(3′,4′‐dimethoxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide; hfac = hexafluoroacetylacetonate). The single‐crystal X‐ray diffraction analysis shows that these complexes have similar mononuclear trispin structures, in which central Ln(III) ion is eight‐coordinated by two O‐atoms from two nitroxide groups and six O‐atoms from three hfac anions. The variable temperature magnetic susceptibility study reveals that there exist ferromagnetic interactions between Gd(III) and the radicals, and antiferromagnetic interactions between two radicals (JGd‐Rad = 3.40 cm?1, JRad‐Rad = ?9.99 cm?1) in complex 2 . Meanwhile, antiferromagnetic interactions are estimated between Eu(III) (or Dy(III)) and radicals in complexes 1 and 4 , and ferromagnetic interaction between Tb(III) and radicals in complex 3 , respectively.  相似文献   

2.
A family of 3d–4f aggregates have been reported through guiding the dual coordination modes of ligand anion (HL?) and in situ generated ancillary bridge driven self‐assembly coordination responses toward two different types of metal ions. Reactions of lanthanide(III) nitrate (Ln=Gd, Tb, Dy, Ho and Yb), nickel(II) acetate and phenol‐based ditopic ligand anion of 2‐[{(2‐hydroxypropyl)imino}methyl]‐6‐methoxyphenol (H2L) in MeCN‐MeOH (3 : 1) mixture and LiOH provided five new octanuclear Ni‐4f coordination aggregates from two Ni2Ln2 cubanes. Single‐crystal X‐ray diffraction analysis reveals that all the members of the family are isostructural, with the central core formed from the coupling of two distorted [Ni2Ln2O4] heterometallic cubanes [Ni2Ln2(HL)2(μ3‐OH)2(OH)(OAc)4]+ (Ln=Gd ( 1 ), Tb ( 2 ), Dy ( 3 ), Ho ( 4 ) and Yb ( 5 )). Higher coordination demand of 4f ions induced the coupling of the two cubes by (OH)(OAc)2 bridges. Variable temperature magnetic study reveals weak coupling between the Ni2+ and Ln3+ ions. For the Tb ( 2 ) and Dy ( 3 ) analogs, the compounds are SMMs without an applied dc field, whereas the Gd ( 1 ) analogue is not an SMM. The observation revealed thus that the anisotropy of the Ln3+ ions is central to display the SMM behavior within this structurally intriguing family of compounds.  相似文献   

3.
In spite of achievement of a lot of Ln-radical SMMs, how to improve magnetic behavior of Ln-radical system remains challenging. Here, two series of Ln-radical complexes have successfully been built using an imino nitroxide biradical, namely, [Ln2(hfac)6(ImPhPyobis)2] (LnIII=Gd 1 , Tb 2 , Dy 3 ) and [Ln2Cu2(hfac)10(ImPhPyobis)2] (LnIII=Gd 4 , Dy 5 ; hfac=hexafluoroacetylacetonate and ImPhPyobis=5-(4-oxypyridinium-1-yl)-1,3-bis(1’-oxyl-4’,4’,5’,5’-tetramethyl-4,5-hydro-1H-imidazol-2-yl)benzene). For these biradical-metal complexes, two imino nitroxide biradicals bind two Ln(III) ions via their oxygen atoms coming from 4-oxypyridinium units to produce a binuclear {Ln2O2} unit. Those imino nitroxide groups are free for complexes 1 – 3 , however one of imino nitroxide groups of the biradical is ligated to the copper(II) ion for complexes 4 and 5 . The distinct magnetic relaxation behaviors are observed for two Dy derivatives, as revealed by ac magnetic studies: complex 3 presents one magnetic process with the effective energy barrier(Ueff) of 74.0 K while complex 5 exhibits dual relaxation processes with Ueff values for the fast- and slow-relaxation being 20.2 K and 30.9 K, respectively, which implies that the second coordination sphere of Dy ion plays a critical role for magnetic relaxation.  相似文献   

4.
Employing nitronyl nitroxide lanthanide(III) complexes as metallo‐ligands allowed the efficient and highly selective preparation of three series of unprecedented hetero‐tri‐spin (Cu?Ln‐radical) one‐dimensional compounds. These 2p–3d–4f spin systems, namely [Ln3Cu(hfac)11(NitPhOAll)4] (LnIII=Gd 1Gd , Tb 1Tb , Dy 1Dy ; NitPhOAll=2‐(4′‐allyloxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide), [Ln3Cu(hfac)11(NitPhOPr)4] (LnIII=Gd 2Gd , Tb 2Tb , Dy 2Dy , Ho 2Ho , Yb 2Yb ; NitPhOPr=2‐(4′‐propoxyphenyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide) and [Ln3Cu(hfac)11(NitPhOBz)4] (LnIII=Gd 3Gd , Tb 3Tb , Dy 3Dy ; NitPhOBz=2‐(4′‐benzyloxyphenyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide) involve O‐bound nitronyl nitroxide radicals as bridging ligands in chain structures with a [Cu‐Nit‐Ln‐Nit‐Ln‐Nit‐Ln‐Nit] repeating unit. The dc magnetic studies show that ferromagnetic metal–radical interactions take place in these hetero‐tri‐spin chain complexes, these and the next‐neighbor interactions have been quantified for the Gd derivatives. Complexes 1Tb and 2Tb exhibit frequency dependence of ac magnetic susceptibilities, indicating single‐chain magnet behavior.  相似文献   

5.
Five acetate-diphenoxo triply-bridged CoII-LnIII complexes (LnIII = Gd, Tb, Dy, Ho, Er) of formula [Co(μ-L)(μ-Ac)Ln(NO3)2] and two diphenoxo doubly-bridged CoII-LnIII complexes (LnIII = Gd, Tb) of formula [Co(H2O)(μ-L)Ln(NO3)3]·S (S = H2O or MeOH), were prepared in one pot reaction from the compartmental ligand N,N′,N′′-trimethyl-N,N′′-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylene triamine (H2L). The diphenoxo doubly-bridged CoII-LnIII complexes were used as platforms to obtain 1,5-dicyanamide-bridged tetranuclear CoII-LnIII complexes (LnIII = Gd, Tb, Dy, Ho, Er). All exhibit ferromagnetic interactions between the CoII and LnIII ions and in the case of the GdIII complexes, the JCoGd were estimated to be ∼+0.7 cm−1. Compound 3 exhibits slow relaxation of the magnetization.  相似文献   

6.
Four biradical-Ln complexes with different transition metal ions, namely [LnM(hfac)5(NITPh-PyPzbis)] (MII=MnII and LnIII=Gd 1 , Dy 2 ; MII=NiII and LnIII=Tb 3 , Dy 4 ), were prepared by the reaction of Ln(hfac)3 ⋅ 2H2O, Mn(hfac)2 ⋅ 2H2O or Ni(hfac)2 ⋅ 2H2O with NITPh-PyPzbis biradical (hfac=hexafluoroacetylacetonate, NITPh-PyPzbis=5-(3-(2-pyridinyl)-1H-pyrazol-1-yl)-1,3-bis(1’-oxyl-3’-oxido- 4’,4’,5’,5’-tetramethyl-4,5-hydro-1H-imidazol-2-yl)benzene). In complexes 1 – 4 , the NITPh-PyPzbis biradical chelates one LnIII ion by means of its aminoxyl moieties and the transition metal ion is introduced through the two N donors from the pyridyl pyrazolyl moiety. Magnetic investigations indicate that complex 4 displays visible maxima in frequency/temperature-dependent χ′′ signals with two-step relaxation processes, but complex 2 exhibits no slow magnetization relaxation. The comparison of structure parameters of both Dy complexes indicates that the symmetries of coordination spheres of two Dy ions are D2d for 2 and C2v for 4 , which thus probably results in different magnetic relaxation behaviors. This work provides new insight for improving properties of Ln-biradical based SMMs.  相似文献   

7.
Two 3D heterometal–organic frameworks based on infrequent trigonal bipyramidal Ln5 clusters as nodes were structurally and magnetically characterized (Ln=Gd ( 1 ), Dy ( 2 )). The results indicate large MCE of up to 30.7 J kg?1 K?1 in 1 and slow magnetic relaxation behavior in 2 . Expectedly, constructing 3D MOFs based on multinuclear clusters as nodes may will be a new strategy for achieving large ?ΔSm. Additionally, compound 1 exhibits high thermal and solvent stabilities, providing a favorable foundation for realistic applications.  相似文献   

8.
A family of phenoxo-bridged heterometallic Schiff base trinuclear complexes, [Fe2LnL2(C3H7COO)(H2O)]·CH3OH·CH3CN·H2O (Ln = Sm, 1; Gd, 2; Tb, 3; Dy, 4) is reported. Those complexes were afforded by “one-pot” reaction of a polydentate Schiff base ligand 2-hydroxy-3-methoxy-phenylsalicylaldimine (H2L) with Fe(NO3)3·9H2O, Ln(NO3)3·6H2O and sodium butyrate (C3H7COONa) in a mixture of methanol and acetonitrile in the presence of triethylamine as a base. Single-crystal X-ray diffraction analysis reveals that the structures of the four complexes are isomorphic. In each complex, two anionic [FeL2]? units coordinate to the central lanthanide ion as a tetradentate ligand using its four phenoxo oxygens, forming a two-blade propeller-like molecular shape. Magnetic properties of 1–4 were investigated using variable temperature magnetic susceptibility, and weak ferromagnetic exchange between the FeIII and LnIII ions has been established for the Gd derivative. The Tb and Dy complexes show no evidence of slow relaxation behavior above 2.0 K.  相似文献   

9.
Adducts of lanthanide perchlorates with 4-nitro and 4-chloro pyridine-Noxides (4-NPNO and 4-CPNO respectively) have been synthesised for the first time and characterised by analysis, electrolytic conductance, infrared, proton-NMR and electronic spectral data. The complexes are of the compositions Ln2(NPNO)15 (ClO4)6 (Ln = La, Pr, Nd and Gd), Tb(NPNO), (C1O4)6), Ln2(NPNO)13 (C1O4)6) (Ln = Dy, Ho, and Yb); Ln (CPNO)8 (C104)3) (Ln = La, Pr, Nd, Tb, Dy, Ho and Yb) and Ln(CPNO), (C1O4)3) (Ln = Sm and Gd). Conductivity and IR data provide evidence for the non-coordinated nature of the perchlorate groups. IR and NMR spectra suggest coordinationvia the oxygen of the N-oxide group. Electronic spectral shapes of the Nd+3 and Ho+3 complexes are interpreted in terms of eight-and seven-coordinate environments in the case of 4-NPNO complexes and eight-coordination in the case of 4-CPNO complexes. IR data indicate bridged structure in NPNO complexes of lanthanides other than Tb.  相似文献   

10.
Polyoxometalates (POMs) with heterodinuclear lanthanoid cores, TBA8H4[{Ln(μ2‐OH)2Ln′}(γ‐SiW10O36)2] ( LnLn′ ; Ln=Gd, Dy; Ln′=Eu, Yb, Lu; TBA=tetra‐n‐butylammonium), were successfully synthesized through the stepwise incorporation of two types of lanthanoid cations into the vacant sites of lacunary [γ‐SiW10O36]8? units without the use of templating cations. The incorporation of a Ln3+ ion into the vacant site between two [γ‐SiW10O36]8? units afforded mononuclear Ln3+‐containing sandwich‐type POMs with vacant sites ( Ln1 ; TBA8H5[{Ln(H2O)4}(γ‐SiW10O36)2]; Ln=Dy, Gd, La). The vacant sites in Ln1 were surrounded by coordinating W? O and Ln? O oxygen atoms. On the addition of one equivalent of [Ln′(acac)3] to solutions of Dy1 or Gd1 in 1,2‐dichloroethane (DCE), heterodinuclear lanthanoid cores with bis(μ2‐OH) bridging ligands, [Dy(μ2‐OH)2Ln′]4+, were selectively synthesized ( LnLn′ ; Ln=Dy, Gd; Ln′=Eu, Yb, Lu). On the other hand, La1 , which contained the largest lanthanoid cation, could not accommodate a second Ln′3+ ion. DyLn′ showed single‐molecule magnet behavior and their energy barriers for magnetization reversal (ΔE/kB) could be manipulated by adjusting the coordination geometry and anisotropy of the Dy3+ ion by tuning the adjacent Ln′3+ ion in the heterodinuclear [Dy(μ2‐OH)2Ln′]4+ cores. The energy barriers increased in the order: DyLu (ΔE/kB=48 K)< DyYb (53 K)< DyDy (66 K)< DyEu (73 K), with an increase in the ionic radii of Ln′3+; DyEu showed the highest energy barrier.  相似文献   

11.
The two complexes, [Ln(Ala)2(Im)(H2O)](ClO4)3 (Ln=Pr, Gd), were synthesized and characterized. Using a solution-reaction isoperibol calorimeter, standard enthalpies of reaction of two reactions: LnCl3⋅6H2O(s)+2Ala(s)+Im(s)+3NaClO4(s)=[Ln(Ala)2(Im)(H2O)](ClO4)3(s)+3NaCl(s)+5H2O(l) (Ln=Pr, Gd), at T=298.15 K, were determined to be (39.26±0.10) and (5.33±0.12) kJ mol–1 , respectively. Standard enthalpies of formation of the two complexes at T=298.15 K, ΔfHΘm {[Ln(Ala)2(Im)(H2O)](ClO4)3(s)} (Ln=Pr, Gd), were calculated as –(2424.2±3.3) and –(2443.4±3.3) kJ mol–1 , respectively.  相似文献   

12.
A series of 12 dinuclear complexes [Ln2Cl6(μ‐4,4′‐bipy)(py)6], Ln=Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, ( 1 – 12 , respectively) was synthesized by an anhydrous solvothermal reaction in pyridine. The complexes contain a 4,4′‐bipyridine bridge and exhibit a coordination sphere closely related to luminescent lanthanide MOFs based on LnCl3 and 4,4‐bipyridine. The dinuclear complexes therefore function as a molecular model system to provide a better understanding of the luminescence mechanisms in the Ln‐N‐MOFs ${\hbox{}{{\hfill 2\atop \hfill \infty }}}$ [Ln2Cl6(4,4′‐bipy)3] ? 2(4,4′‐bipy). Accordingly, the luminescence properties of the complexes with Ln=Y, Sm, Eu, Gd, Tb, Dy, ( 1 , 4 – 8 ) were determined, showing an antenna effect through a ligand–metal energy transfer. The highest efficiency of luminescence is observed for the terbium‐based compound 7 displaying a high quantum yield (QY of 86 %). Excitation with UV light reveals typical emission colors of lanthanide‐dependent intra 4f–4f‐transition emissions in the visible range (TbIII: green, EuIII: red, SmIII: salmon red, DyIII: yellow). For the GdIII‐ and YIII‐containing compounds 6 and 1 , blue emission based on triplet phosphorescence is observed. Furthermore, ligand‐to‐metal charge‐transfer (LMCT) states, based on the interaction of Cl? with EuIII, were observed for the EuIII compound 5 including energy‐transfer processes to the EuIII ion. Altogether, the model complexes give further insights into the luminescence of the related MOFs, for example, rationalization of Ln‐independent quantum yields in the related MOFs.  相似文献   

13.
Three series of copper–lanthanide/lanthanide coordination polymers (CPs) LnIIICuIICuI(bct)3(H2O)2 [Ln=La ( 1 ), Ce ( 2 ), Pr ( 3 ), Nd ( 4 ), Sm ( 5 ), Eu ( 6 ), Gd ( 7 ), Tb ( 8 ), Dy ( 9 ), Er ( 10 ), Yb ( 11 ), and Lu ( 12 ), H2bct=2,5‐bis(carboxymethylmercapto)‐1,3,4‐thiadiazole acid], LnIIICuI(bct)2 [Ln=Ce ( 2 a ), Pr ( 3 a ), Nd ( 4 a ), Sm ( 5 a ), Eu ( 6 a ), Gd ( 7 a ), Tb ( 8 a ), Dy ( 9 a ), Er ( 10 a ), Yb ( 11 a ), and Lu ( 12 a )], and LnIII2(bct)3(H2O)5 [Ln=La ( 1 b ), Ce ( 2 b ), Pr ( 3 b ), Nd ( 4 b ), Sm ( 5 b ), Eu ( 6 b ), Gd ( 7 b ), Tb ( 8 b ), and Dy ( 9 b )] have been successfully constructed under hydrothermal conditions by modulating the reaction time. Structural characterization has revealed that CPs 1 – 12 possess a unique one‐dimensional (1D) strip‐shaped structure containing two types of double‐helical chains and a double‐helical channel. CPs 2 a – 12 a show a three‐dimensional (3D) framework formed by CuI linking two types of homochiral layers with double‐helical channels. CPs 1 b – 9 b exhibit a 3D framework with single‐helical channels. CPs 6 b and 8 b display visible red and green luminescence of the EuIII and TbIII ions, respectively, sensitized by the bct ligand, and microsecond‐level lifetimes. CP 8 b shows a rare magnetic transition between short‐range ferromagnetic ordering at 110 K and long‐range ferromagnetic ordering below 10 K. CPs 9 a and 9 b display field‐induced single‐chain magnet (SCM) and/or single‐molecule magnet (SMM) behaviors, with Ueff values of 51.7 and 36.5 K, respectively.  相似文献   

14.
The reaction of 1,8-diamino-3,6-diazaoctane and diethyl malonate in dry methanol yielded a 13-membered macrocycle. Complexes of the type [Ln(tatd)Cl2 (H2O)3]Cl [LnIII=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy; tatd=1, 5, 8, 11-tetra-azacyclotridecane-2,4-dione] have been synthesized by template condensation. The complex [La(tatd)Cl2 (H2O)3]Cl in methanol was reacted with lanthanide chlorides to yield the trinuclear complexes of type [2{La(tatd)Cl2(H2O)3}LnCl3]Cl2 [LnIII=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy]. The chemical compositions of mono and trinuclear complexes have been established on the basis of analytical, molar conductance, electrospray (ES) and fast atom bombardment (FAB) mass data. In mononuclear complexes the Ln3+ ion is encapsulated by four ring nitrogens and in trimetallic complexes the exo-carbonyl oxygens of two mononuclear units coordinate to the Ln3+ ions resulting in a polyhedron around the lanthanide ions. Thus the macrocycle is bonded in a tetradentate fashion in the former complexes and hexadentate in the latter. The coordination number nine around the encapsulated Ln3+ and seven around the exo-oxygen bonded Ln3+ ions are established. The symmetry of the ligand field around the metal ions is indicated from the emission spectra.  相似文献   

15.
Assembly of the triangular, organic radical‐bridged complexes Cp*6Ln33‐HAN) (Cp*=pentamethylcyclopentadienyl; Ln=Gd, Tb, Dy; HAN=hexaazatrinaphthylene) proceeds through the reaction of Cp*2Ln(BPh4) with HAN under strongly reducing conditions. Significantly, magnetic susceptibility measurements of these complexes support effective magnetic coupling of all three LnIII centers through the HAN3−. radical ligand. Thorough investigation of the DyIII congener through both ac susceptibility and dc magnetic relaxation measurements reveals slow relaxation of the magnetization, with an effective thermal relaxation barrier of Ueff=51 cm−1. Magnetic coupling in the DyIII complex enables a large remnant magnetization at temperatures up to 3.0 K in the magnetic hysteresis measurements and hysteresis loops that are open at zero‐field up to 3.5 K.  相似文献   

16.
In order to shed light upon the nature and mechanism of 4f-3d magnetic exchange interactions, a series of binuclear complexes of lanthanide(3+) and chromium(3+) with the general formula [Ln(L)5(H2O)2Cr(CN)6]·mL· nH2O (Ln=La (1), Ce (2), Pr (3), Nd (4); x=5, y=2, m=1 or 2, n=2 or 2.5; L=2-pyrrolidinone) and [Ln(L)4(H2O)3Cr(CN)6] ·nH2O (Ln=Sm (5), Eu (6), Gd (7), Tb (8), Dy (9), Er (10); x=4, y=3, m=0, n= 1.5 or 2.0; L=2-pyrrolidinone) were prepared and the X-ray crystal structures of complexes 2, 6 and 7 were determined. All the compounds consist of a Ln-CN-Cr unit, in which Ln^3+ in a square antiprism environment is bridged to an octahedral coordinated Cr^3+ ion through a cyano group. The magnetic properties of the complexes 3 and 6-10 show an overall antiferromagnetic behavior. The fitting to the experimental magnetic susceptibilities of 7 give g= 1.98, J=0.40 cm^-1, zJ'= -0.21 cm^-1 on the basis of a binuclear spin system (Scd=7/2, Scr=3/2), revealing an intra-molecular Gd^3+-Cr^3+ ferromagnetic interaction and an inter-molecular antiferromagnetic interaction. For 7 the calculation of quantum chemical density functional theory (DFT), combined with the broken symmetry approach, showed that the calculated spin coupling constant was 20.3 cm^-1, supporting the observation of weak ferromagnetic intra-molecular interaction in 7. The spin density distributions of 7 in both the high spin ground state and the broken symmetry state were obtained, and the spin coupling mechanism between Gd^3+ and Cr^3+ was discussed.  相似文献   

17.
We report a series of 3d–4f complexes {Ln2Cu3(H3L)2Xn} (X=OAc?, Ln=Gd, Tb or X=NO3?, Ln=Gd, Tb, Dy, Ho, Er) using the 2,2′‐(propane‐1,3‐diyldiimino)bis[2‐(hydroxylmethyl)propane‐1,3‐diol] (H6L) pro‐ligand. All complexes, except that in which Ln=Gd, show slow magnetic relaxation in zero applied dc field. A remarkable improvement of the energy barrier to reorientation of the magnetisation in the {Tb2Cu3(H3L)2Xn} complexes is seen by changing the auxiliary ligands (X=OAc? for NO3?). This leads to the largest reported relaxation barrier in zero applied dc field for a Tb/Cu‐based single‐molecule magnet. Ab initio CASSCF calculations performed on mononuclear TbIII models are employed to understand the increase in energy barrier and the calculations suggest that the difference stems from a change in the TbIII coordination environment (C4v versus Cs).  相似文献   

18.
We report the synthesis of Ln3+ nitrate [Ln(Tpm)(NO3)3] ⋅ MeCN (Ln=Yb ( 1Yb ), Eu ( 1Eu )) and chloride [Yb(Tpm)Cl3] ⋅ 2MeCN ( 2Yb ), [Eu(Tpm)Cl2(μ-Cl)]2 ( 2Eu ) complexes coordinated by neutral tripodal tris(3,5-dimethylpyrazolyl)methane (Tpm). The crystal structures of 1Ln and 2Ln were established by single crystal X-ray diffraction, while for 1Yb high resolution experiment was performed. Nitrate complexes 1Ln are isomorphous and both adopt mononuclear structure. Chloride 2Yb is monomeric, while Eu3+ analogue 2Eu adopts a binuclear structure due to two μ2-bridging chloride ligands. The typical lanthanide luminescence was observed for europium complexes ( 1Eu and 2Eu ) as well as for terbium and dysprosium analogues ([Ln(Tpm)(NO3)3] ⋅ MeCN, Ln=Tb ( 1Tb ), Dy ( 1Dy ); [Ln(Tpm)Cl3] ⋅ 2MeCN, Ln=Tb ( 2Tb ), Dy ( 2Dy )).  相似文献   

19.
Ligand L was synthesized and then coordinated to [Ln(hfac)3] ? 2 H2O (LnIII=Tb, Dy, Er; hfac?=1,1,1,5,5,5‐hexafluoroacetylacetonate anion) and [Ln(tta)3]?2 H2O (LnIII=Eu, Gd, Tb, Dy, Er, Yb; tta?=2‐thenoyltrifluoroacetonate) to give two families of dinuclear complexes [Ln2(hfac)6( L )] ? C6H14 and [Ln2(tta)6( L )] ? 2 CH2Cl2. Irradiation of the ligand at 37 040 cm?1 and 29 410 cm?1 leads to tetrathiafulvalene‐centered and 2,6‐di(pyrazol‐1‐yl)‐4‐pyridine‐centered fluorescence, respectively. The ligand acts as an organic chromophore for the sensitization of the infrared ErIII (6535 cm?1) and YbIII (10 200 cm?1) luminescence. The energies of the singlet and triplet states of L are high enough to guarantee an efficient sensitization of the visible EuIII luminescence (17 300–14 100 cm?1). The EuIII luminescence decay can be nicely fitted by a monoexponential function that allows a lifetime estimation of (0.49±0.01) ms. Finally, the magnetic and luminescence properties of [Yb2(hfac)6( L )] ? C6H14 were correlated, which allowed the determination of the crystal field splitting of the 2F7/2 multiplet state with MJ=±1/2 as ground states.  相似文献   

20.
A series of six‐coordinate lanthanide complexes {(H3O)[Ln(NA)2]?H2O}n (H2NA=5‐hydroxynicotinic acid; Ln=GdIII ( 1?Gd ); TbIII ( 2?Tb ); DyIII ( 3?Dy ); HoIII ( 4?Ho )) have been synthesized from aqueous solution and fully characterized. Slow relaxation of the magnetization was observed in 3?Dy . To suppress the quantum tunneling of the magnetization, 3?Dy diluted by diamagnetic YIII ions was also synthesized and magnetically studied. Interesting butterfly‐like hysteresis loops and an enhanced energy barrier for the slow relaxation of magnetization were observed in diluted 3?Dy . The energy barrier (Δτ) and pre‐exponential factor (τ0) of the diluted 3?Dy are 75 K and 4.21×10?5 s, respectively. This work illustrates a successful way to obtain low‐coordination‐number lanthanide complexes by a framework approach to show single‐ion‐magnet‐like behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号