首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel energy-transfer system involving nonaggregated cationic porphyrins adsorbed on an anionic-type clay surface and the electron-transfer reaction that occurs after light harvesting are described. In the clay-porphyrin complexes, photochemical energy transfer from excited singlet zinc porphyrins to free-base porphyrins proceeds. The photochemical electron-transfer reaction from an electron donor in solution (hydroquinone) to the adsorbed porphyrin in the excited singlet state was also examined. Because the electron-transfer rate from the hydroquinone to the excited singlet free-base porphyrin is larger than that to the excited singlet zinc porphyrin, we conclude that the energy transfer accelerates the overall electron-transfer reaction.  相似文献   

2.
Chiral aggregation of oligo(p-phenylene vinylene)-functionalized Zn and free-base porphyrins is observed in water. The formation of mixed assemblies containing both porphyrins results in sequential energy transfer from OPV via zinc porphyrin to free-base porphyrin. Furthermore, the incorporation of C60 as electron acceptor yields a charge separated state by ultimate electron transfer.  相似文献   

3.
Among three noble-metal-free molecular devices (1-3) containing a porphyrin photosensitizer and a cobaloxime catalyst, the one with a zinc porphyrin unit displayed apparently higher efficiency for photoinduced H(2) production than complex 2 with a magnesium porphyrin and 3 with a free-base porphyrin, possibly due to the formation of a TEAZnPor-Co triad in solution.  相似文献   

4.
Photochemical hole burning (PHB) of free-base porphyrins in host polymers as a site-selective spectroscopy reveals the existence of vibronic structure in a porphyrin Q-band peak and low-energy excitation modes of host polymers. A new mechanism of photon-gated PHB by two-color sensitization of photoreactive polymers with a zinc porphyrin is also presented.  相似文献   

5.
The photochemical and electrochemical properties of four chlorin-C60 or porphyrin-C60 dyads having the same short spacer between the macrocycle and the fullerene are examined. In contrast with all the previous results on porphyrin-fullerene dyads, the photoexcitation of a zinc chlorin-C60 dyad results in an unusually long-lived radical ion pair which decays via first-order kinetics with a decay rate constant of 9.1 x 10(3) x s(-1). This value is 2-6 orders of magnitude smaller than values reported for all other porphyrin or chlorin donor-acceptor of the molecule dyad systems. The formation of radical cations of the donor part and the radical anion of the acceptor part was also confirmed by ESR measurements under photoirradiation at low temperature. The photoexcitation of other dyads (free-base chlorin-C60, zinc porphyrin-C60, and free-base porphyrin-C60 dyads) results in formation of the ion pairs which decay quickly to the triplet excited states of the chlorin or porphyrin moiety via the higher lying radical ion pair states as is expected from the redox potentials.  相似文献   

6.
Circular dichroism (CD), UV–vis absorption, fluorescence, and resonance light scattering (RLS) spectroscopies were used to elucidate the role of the DNA sequence, linkers between DNA and porphyrin, and metal in the porphyrin coordination center on the self-assembly of DNA–porphyrin conjugates. A series of eight non-self-complementary DNA–porphyrin conjugates have been synthesized with zinc and free-base porphyrins covalently attached to the short ODNs (A8 or T8) via amide or phosphate linker. A small structural modification (e.g., amide linker replaced by the phosphate linker) showed a dramatic effect on the aggregation properties of DNA–porphyrin conjugates and greatly altered their spectroscopic properties. At low ionic strength, porphyrin aggregation was not observed for any conjugate. An increase in the ionic strength caused two out of eight conjugates to form chiral porphyrin dimers.  相似文献   

7.
Porphyrin molecules offer immense potential as the light harvesting component of dye-sensitised nanocrystalline TiO(2) solar cells. Synthetic porphyrin dyes were amongst the first dyes trialled for sensitisation of inorganic semiconducting oxides. Today, they exhibit the best performance reported for dye-sensitised solar cells. Accompanying the significant performance improvement over the last two decades is a much improved understanding of efficiency-determining fundamental electron transfer steps, from charge photogeneration to recombination. In this feature article we highlight our recent discoveries of the influence of porphyrin molecule structure on efficiency determining electron transfer kinetics and device performance by systematically changing the molecular structure and observing electron injection and recombination kinetics using time-resolved optical and electrical probes. Despite our observation of ultrafast charge injection for all porphyrin dyes studied by transient absorption spectroscopy, the injection yield estimated using an internal standard remains below 100% and depends strongly on the molecular structure. The observed discrepancy between kinetic competition and the injection yield is attributed to non-injecting dyes, probably arising due to inhomogeneity. A very interesting sub-ns (0.5 ns to 100 ns) charge recombination channel between photo-injected electrons and porphyrin cations is observed, which is found to be more prominent in free-base porphyrin dyes with a conjugated linker. Charge recombination between the acceptor species in the redox containing electrolyte and injected electrons is shown to be an important limitation of most porphyrin-sensitised solar cells, accelerated by the presence of porphyrin molecules at the TiO(2)-electrolyte interface. This recombination reaction is strongly dependent on the porphyrin molecular structure. Bulky substituents, using a porphyrin dimer instead of a porphyrin monomer, a light soaking treatment of freshly prepared films and co-sensitization of TiO(2) with multiple dyes are shown to be successful strategies to improve electron lifetime. Finally, new developments unique to porphyrin dye-sensitised solar cells, including performance enhancements from a light exposure treatment of a zinc porphyrin dye, a significant performance improvement observed after co-sensitisation of TiO(2) with free-base and zinc porphyrin dyes and the use of porphyrin dimers with increased light harvesting in thin-film TiO(2) solar cells are described.  相似文献   

8.
The synthesis is reported of a series of metalloporphyrins (and the corresponding free-base porphyrin), mono-meso-substituted with a bipyridyl group via an amide link at the 4-position of one phenyl group: [Re(CO)(3)(Pic)Bpy-MTPP][OTf], where M = Mg, Zn, Pd or 2H, Pic = 3-picoline, Bpy = 2,2'-bipyridine, TPP = tetraphenylporphyrin. The photochemical reactions of the assemblies with the sacrificial electron donor triethylamine have been investigated by IR spectroscopy and compared to the behaviour of analogues of the type Bpy-MTPP without rhenium. Selective long-wavelength irradiation of the metalloporphyrin unit in the presence of excess picoline leads to reduction at the rhenium bipyridine centre. In the absence of 3-picoline, the latter is not reduced, but substituted by added halide or by the THF solvent. Mechanistic analysis highlights the differences between the zinc and magnesium chelate on the one hand and the palladium porphyrin on the other. The free-base assembly, [Re(CO)(3)(Pic)Bpy-H(2)TPP][OTf] is unreactive. The zinc and magnesium porphyrin assemblies initially coordinate Et(3)N before undergoing photo-induced inner-sphere electron transfer from the triethylamine to form a charge-shifted excited state of the assembly. In contrast, the palladium-based dyad reacts via outer-sphere reductive quenching of a porphyrin-based excited state. The substitution products are postulated to form by a mechanism involving an electron-transfer chain.  相似文献   

9.
DNA-porphyrin conjugates were designed and synthesized for the preparation of the conformationally controlled porphyrin dimer structures constructed on a d(GCGTATACGC)2. Porphyrin derivatives were introduced to the central TATpA sequence where p represents the phosphoramidate for the attachment of the free-base porphyrin (FbP) and zinc-coordinated porphyrin (ZnP), which allows contact of the two porphyrins in the minor groove. The porphyrin dimers were characterized using CD, UV-vis, steady-state, and time-resolved fluorescence spectroscopies, indicating that the porphyrins form face-to-face conformations. Also the co-facial conformation was confirmed by comparison with spectra of the non-self-complementary duplex containing one porphyrin moiety. Introduction of zinc into porphyrin moiety destabilized the duplex formation. Two diastereomers showed different thermal stabilities and affected the conformations of porphyrin dimers. The temperature-dependent assembly and the conformational change of the porphyrin dimer on the duplex DNA were observed in the UV-vis spectra, indicating that the dynamic movement of the porphyrin dimer occurs on the duplex. The results indicate that the porphyrin dimers of DNA-FbP conjugates are overlapped clockwise and are located in the minor groove of the usual B-form DNA backbone. The interaction and conformation of two porphyrin moieties are controlled by the following three factors: (1) temperature change during and after formation of the duplex porphyrins at lower temperature; (2) diastereochemistry of the phosphoramidates where porphyrins are connected via a linker; and (3) zinc ion coordination that destabilizes the interaction of porphyrins as well duplex formation.  相似文献   

10.
A new series of meso-substituted diaryl free-base and metalloporphyrins have been prepared. Each arene has been substituted with both a methyl group in the ortho position and a formyl group in the meta position. Rotation of the arene units is prevented at room temperature due to the steric restrictions imposed by the flanking methyl groups at the porphyrin beta-pyrrolic positions on the methyl groups at the ortho position on the meso-substituted arene unit. This allowed the alpha alpha and alpha beta atropisomers of this porphyrin to be separated and characterised. X-Ray crystallographic determination of the structure of the free-base porphyrin revealed a very flat porphyrin core. Metallation resulted in the isolation and characterisation of the nickel, zinc and copper derivatives. The assignments of the alpha alpha and alpha beta isomers are confirmed by X-ray crystallographic determination of the structures of the Cu(II) analogues. The copper alpha alpha structure exhibits a very twisted porphyrin core, the copper alpha beta structure is also distorted, but to a lesser degree. The activation energy for rotation has been calculated for each of the 2H, Ni and Zn derivatives. The energy required to rotate the arene ring increases in the order Ni < Zn approximately 2H. No significant difference in the free energy of rotation was observed between experiments carried out with the alpha alpha and small alpha beta isomers.  相似文献   

11.
The bis-porphyrin system ZnP(2), in which two zinc porphyrins are connected by a phenanthroline linker in an oblique fashion, acts as a bifunctional receptor towards the complexation of free-base meso-5,10-bis(4'-pyridyl)-15,20-diphenylporphyrin (4'-cis DPyP). In solution, NMR spectroscopy evidenced quantitative formation of the tris-porphyrin macrocyclic assembly ZnP(2)(4'-cis DPyP), in which the two fragments are held together by two axial 4'-N(pyridyl)-Zn interactions. The remarkable stability of the edifice (an association constant of about 6x10(8) M(-1) was determined by UV/Vis absorption and emission titration experiments in toluene) is due to the almost perfect geometrical match between the two interacting units. The macrocycle was crystallized and studied by X-ray diffraction, which confirmed the excellent complementarity of the two components. Photoinduced energy transfer from the singlet excited state of the zinc porphyrin chromophores to the free-base porphyrin occurs with an efficiency of 98 % (k(en)=2x10(10) s(-1) in toluene, ambient temperature) with a mechanism consistent with a dipole-dipole process with a low orientation factor.  相似文献   

12.
New ethanediyl-bridged unsymmetrical mono- and heterometallated dimers of 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphyrin (H2oep) containing transition-metal ions (Mn and Fe) were synthesized by a facile stepwise metallation/demetallation process under mild conditions. The novel metallation strategy initially involved the predominant insertion of Zn into one of the two porphyrin rings of the free-base dimer, followed by the incorporation of Mn or Fe into the other porphyrin ring under exceptionally mild conditions, giving corresponding heterometallic dimers; the subsequent removal of Zn yielded mono-transition-metal dimers. The emission spectrum of the monozinc dimer predominantly exhibited fluorescence bands of the free-base porphyrin component, indicating a very efficient energy-transfer process. Conversely, emission of the free-base or Zn porphyrin component of transition metal containing dimers was strongly quenched due to photoinduced electron transfer.  相似文献   

13.
We have recently discussed how organic nanocrystal dissolution appears in different morphologies and the role of the solution pH in the crystal detriment process. We also highlighted the role of the local molecular chemistry in porphyrin nanocrystals having comparable structures: in water-based acid solutions, protonation of free-base porphyrin molecules is the driving force for crystal dissolution, whereas metal (ZnII) porphyrin nanocrystals remain unperturbed. However, all porphyrin types, having an electron rich π-structure, can be electrochemically oxidized. In this scenario, a key question is: does electrochemistry represent a viable strategy to drive the dissolution of both free-base and metal porphyrin nanocrystals? In this work, by exploiting electrochemical atomic force microscopy (EC-AFM), we monitor in situ and in real time the dissolution of both free-base and metal porphyrin nanocrystals, as soon as molecules reach the oxidation potential, showing different regimes according to the applied EC potential.  相似文献   

14.
The synthesis of a porphyrin compound, 1, containing a 2,9-dimethyl-1,10-phenanthroline moiety that is fused at the beta-pyrrole positions is reported. The absorption spectra of the free-base, copper(II), and zinc(II) derivatives have been studied. On the basis of absorption band intensities, the HOMO of the free base (H21) and its copper and zinc complexes (Cu1 and Zn1) was determined to be of a1u symmetry. Relative to H21, compounds Cul and Znl show enhanced spectral changes upon external metal ion binding. Although the HOMO is the same in all three compounds, the energy gap between the two highest occupied orbitals is greater for Cu1 and Zn1 than it is for the free-base compound. Several metal ions (Ni2+, Cu+, Cu2+, Zn2+, Li+) were examined in their binding to the phenanthrolinic group by measuring the resulting changes in the absorption spectra. It is shown that the observed changes in the absorption spectra are insensitive to the nature of the metal ion coordinated by the phenanthroline moiety. Significant differences in the absorption and emission spectra between Zn1 and [Zn(Zn1)2]2+ clearly demonstrate that the porphyrin pi-system is strongly affected by the binding of metal ions at the fused phenanthrolinic moiety.  相似文献   

15.
trans-AB(2)C porphyrins with A = C(6)H(4)-COOR, C = C(6)H(4)-NX(2) and B = C(6)H(5) (R = CH(3), H; X = O, H) have been synthesised by a rational high-yield procedure (1a-1d) and their zinc(ii) and copper(ii) complexes have been prepared (2a-2d, 3a-3d ).1a, 2a .THF and 3a display different distortions of the porphyrin core as shown by single crystal X-ray crystallography and NSD analyses. The Soret and Q bands of free-base and metalated porphyrins with mixed electron donating and withdrawing substituents (NH(2)/COOR) are red-shifted as are the corresponding emission bands of free-base and zinc porphyrins. The electronic asymmetry revealed by spectrocopy is rationalised by DFT calculations.  相似文献   

16.
A series of rigid polyphenylene, free-base porphyrin-containing dendrimers terminated with either dimethoxybenzene or benzoquinone end-groups were prepared by a combined divergent and convergent synthesis. Unlike previous routes for preparing polyphenylene dendrimers that are incompatible with end-groups bearing certain functional moieties, the synthetic methodology chosen for this work enables incorporation of functional groups on the dendrimer end-groups during preparation of the dendrimer wedges and during synthesis of the final dendrimer. The basic strategy utilized a convergent preparation of dendrimer wedges using Suzuki coupling conditions, which were then either attached to a porphyrin core in a divergent coupling step or cyclized to form the porphyrin dendrimer in a convergent step. The latter approach was found to be more general and resulted in higher yields and more readily separated products. Steady-state absorption measurements for these dendrimers showed Soret and Q-band absorptions typical of free-base porphyrins. Preliminary steady-state fluorescence measurements of these dendrimers indicate quenching of the S1 state of the free-base porphyrin in all benzoquinone-containing dendrimers that is attributed to efficient electron-transfer from the excited porphyrin to the benzoquinone end-groups. The amount of fluorescence quenching was in good agreement with the number of benzoquinone groups at the dendrimer periphery and the distance between the porphyrin and benzoquinone groups as calculated by semiempirical (AM1) molecular orbital calculations.  相似文献   

17.
The preparation and characterisation of the free-base and zinc metallated derivatives of 5,10,15,20-tetrakis(4-(2-(2-hydroxyethoxy)ethoxy)phenyl)porphyrin 1 is described. The X-ray crystal structure of the Zn(II) adduct 2 dimerises in the solid state via an intermolecular polyether oxygen–Zn(II) interaction (O…Zn = 2.124(4) Å). The porphyrin dimers form discrete layers defined by a distance of 5.10 Å between the porphyrin planes in adjacent layers. A bilayer sheeting arrangement of the porphyrin macrocyclic units is achieved through cooperative hydrogen bonding of the ethoxyethanol arms to form 11-membered macrocycles containing four hydrogen bonds.  相似文献   

18.
The improved virtual orbital-complete active space configuration interaction (IVO-CASCI) method is applied to determine the geometries of the ground state of free-base porphin and its metal derivatives, magnesium and zinc porphyrins. The vertical excitation energies and ionization potentials are computed at these optimized geometries using an IVO-based version of multireference Mo?ller-Plesset (IVO-MRMP) perturbation theory. The geometries and excitation energies obtained from the IVO-CASCI and IVO-MRMP methods agree well with experiment and with other correlated many-body methods. We also provide the ground state vibrational frequencies for free-base porphin and Mg-porphyrin. All frequencies are real in contrast to self-consistent field treatments which yield an imaginary frequency. Ground state normal mode frequencies (scaled) of free-base porphin and magnesium porphyrin from IVO-CASCI and complete active space self-consistent field methods are quite similar and are consistent with Becke-Slater-Hartree-Fock exchange and Lee-Yang-Parr correlation density functional theory calculations and with experiment. In addition, geometries are determined for low-lying excited state triplets and for positive ion states of the molecules. To our knowledge, no prior experimental and theoretical data are available for these excited state geometries of magnesium and zinc porphyrins. Given that the IVO-CASCI and IVO-MRMP computed geometries and excitation energies agree favorably with experiment and with available theoretical data, our predicted excited state geometries should be equally accurate.  相似文献   

19.
A photochromic nitrospiropyran moiety (Sp) has been covalently linked to a zinc (PZn) and to a free-base (P(H2)) porphyrin. In the resulting dyads (P(Zn)-Sp(c) and P(H2)-Sp(c)), the porphyrin first excited singlet states are unperturbed by the closed form of the attached spiropyran. Excitation of the spiropyran moiety of either dyad in the near-UV region results in ring opening to a merocyanine form (P-Sp(o)) that absorbs at 600 nm. The open form re-closes thermally in 2-methyltetrahydrofuran with a time constant of 20 s, or following irradiation into the 600 nm band. Excitation of the zinc porphyrin moiety in the merocyanine form of the dyad yields 1PZn-Sp(o). The lifetime of the zinc porphyrin excited state is reduced from its usual value of 1.8 ns to 130 ps by singlet-singlet energy transfer to the merocyanine moiety to give PZn-1Sp(o). The quantum yield of energy transfer is 0.93. Quenching is also observed in the free base dyad, where 1P(H2)-Sp(o) and P(H2)-1Sp(o) exchange singlet excitation energy. This photoswitchable quenching phenomenon provides light-activated control of the porphyrin excited states, and consequently control of any subsequent energy or electron-transfer processes that might be initiated by these excited states in more complex molecular photonic or optoelectronic devices.  相似文献   

20.
The ground and excited states of a covalently linked porphyrin-fullerene dyad in both its free-base and zinc forms (D. Kuciauskas et al., J. Phys. Chem. 100 (1996) 15926) have been investigated by semiempirical methods. The excited-state properties are discussed by investigation of the character of the molecular orbitals. All frontier MOs are mainly localized on either the donor or the acceptor subunit. Thus, the absorption spectra of both systems are best described as the sum of the spectra of the single components. The experimentally observed spectra are well reproduced by the theoretical computations. Both molecules undergo efficient electron transfer in polar but not in apolar solvents. This experimental finding is explained theoretically by explicitly considering solvent effects. The tenth excited state in the gas phase is of charge-separated character where an electron is transferred from the porphyrin donor to the fullerene acceptor subunit. This state is stabilized in energy in polar solvents due to its large formal dipole moment. The stabilization energy for an apolar environment such as benzene is not sufficient to lower this state to become the first excited singlet state. Thus, no electron transfer is observed, in agreement with experiment. In a polar environment such as acetonitrile, the charge-separated state becomes the S, state and electron transfer takes place, as observed experimentally. The flexible single bond connecting both the donor and acceptor subunits allows free rotation by ca. +/- 30 degrees about the optimized ground-state conformation. For the charge-separated state this optimized geometry has a maximum dipole moment. The geometry of the charge-separated state thus does not change relatively to the ground-state conformation. The electron-donating properties of porphyrin are enhanced in the zinc derivative due to a reduced porphyrin HOMO-LUMO energy gap. This yields a lower energy for the charge-separated state compared to the free-base dyad.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号