首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The complex [Pt(C2H4)(PPh3)2] reacts with Pb2Ph6 to give cis-[PtPh(Pb2Ph5)(PPh3)2]; this decomposes in solution to cis-[PtPh(PbPh3)(PPh3)2], which may also be obtained from the ethylene complex and PbPh4. Lead compounds PbPhMe3 and PbPh3Br also give products of insertion into PbPh bonds, but PbMe3Cl gives cis- and trans-[PtCl(PbMe3)(PPh3)2]. The complex trans-[Pt(PbPh3)2(PEt3)2] reacts with 1,2-bis(diphenylphosphino)ethane (DPPE) to give [Pt(PbPh3)2(DPPE)] which readily decomposes in dichloromethane in presence of PEt3 to give [Pt(PbPh3)(PEt3)(DPPE)]Cl and [PtPh(PEt3)(DPPE)]Cl. The complex trans-[PtCl(PbPh3)(PEt3)2] was detected in the products of reactions between trans-[PtCl2(PEt3)2] and trans-[Pt(PbPh3)2(PEt3)2] or less than 2 moles of LiPbPh3; it was not detected in the mixture after treatment of trans -[Pt(PbPh3)2(PEt3)2] with HCl. In contrast to an earlier report, we were unable to detect lead-containing complexes in the products of the reaction between trans-[PtHCl(PPh3)2] and Ph3PbNO3. The complexes and their decomposition products were identified by pre31P-{1H} NMR spectroscopy.  相似文献   

2.
Reactions of Mixed Ligand Complexes of Nickel(0) with Carbon Dichalcogenides Decisive for the occurrence of a reaction between mixed ligand complexes of nickel(0) and carbon dichalcogenides is the HOMO-energy of the complex and the LUMO-energy of the reagent, which are reflected in the corresponding polarographic half-wave potentials. Therefore, (dipy)-Ni(COD) is substituted by SeCS, CS2 and SCO, whereas (PPh3)2Ni(C2H4) only reacts with CS2, but not with SCO. Substitution by CO2 needs substrates like Ni(PCy3)3 or Ni(PEt3)4 which have the lowest anodic waves. (PCy3)2Ni(C2H4) and (dipy)Ni(PPh3)2 effect C?S-bond breaking in SCO, and mixed carbonyls, such as (PCy3)2Ni(CO)2 or (PPh3)2Ni(CO)2, are formed. Futher products are dithiocarbonates or oligonuclear nickel sulfides which are stabilized by a phosphine. Another oligonuclear complex, (PPh3)2Ni3(CS2)2, is formed by the reaction of CS2 with surplus (PPh3)2Ni(C2H4). The function of CS2 is that of a bridging ligand. The carbon dichalcogenides are side-on (η2) coordinated in compounds like (dipy)Ni(CS2), (PPh3)Ni(CS2) and (dipy)Ni(SCO). It is always the highest electronegative heteroatom of the non symmetric ligands SeCS and SCO which does not interact with the central atom.  相似文献   

3.
The mono-hydrido-bridged complexes (PEt3)2(Ar)Pt(μ2-H)Pt(Ar)(PEt3)2]-[BPh4] (Ar = Ph, 4-MeC6H4 and 2,4-Me2C6H3) have been obtained by treating trans-[Pt(Ar)(MeOH)(PEt3)2][BF4] with sodium formate and Na[BPH4]. The cations [PEt3)2(Ar)Pt(μ2-H)Pt(Arb')(PEt3)2]b+ (Ar = Ph and Arb' - 2,4-Me2C6H3 and 2,4,6-Me3C6H2 have bee identified in solution. Their b1H- and b31P-NMR data are reported. The X-ray crystal structure of [(PEt3)2(Ph)Pt(μ2-H)Pt(Ph)(PEt3)2][BPh4] is reported.  相似文献   

4.
The reactions of various alkyne-platinum(0) complexes with methyl iodide and with iodine have been studied. The 3-hexyne complex Pt(C2H5C2C2H5)(PPh3)2 gives alkyne-free oxidative addition products PtI(CH3) (PPh3)2 and PtI2 (PPh3)2 exclusively. In contrast, the strained cyclic alkyne complexes Pt(C6H8)(PPh3)2, Pt(C7H10)(PPh3)2, Pt(C6H8) (dppe) and Pt(C7H10) (dppe)1 react with methyl iodide to give mainly 2-methylcycloalkenyiplatinum(II) complexes, e.g. PtI(C6H8CH3) (PPh3)2, formed by electrophilic attack on the metal-alkyne bond. Iodine reacts similarly with Pt(C6H8) (PPh3)2 and Pt(C7H10) (PPh3)2 to give 2-iodocycloalkenylplatinum(II) complexes but, in the case of the corresponding dppe complexes, PtI2(dppe) is the main product. The insertion reaction of methyl iodide with Pt(C6H8)(PPh3)2 proceeds via an oxidative addition intermediate PtI(CH3) (C6H8) (PPh3)2 which can be isolated. Trifluoromethyl iodide reacts with Pt(C6H8)(PPh3)2 to give a 2-iodocyclohexenyl complex Pt(CF3) (C6H8I) (PPh3)2 and with Pt(C7H10) (PPh3)2 to give PtI(CF3) (PPh3)2. 31P NMR data are given and discussed.  相似文献   

5.
Reactions of Pt(PPh3)4 with the sulfines, XYCSO, (X, Y = aryl, S-aryl, S-alkyl, Cl) yield coordination compounds of the type Pt(PPh3)2(XYCSO). Infrared, 31P and 1H NMR spectra reveal that in all cases the sulfine ligand is coordinated side-on via the CS π-bond (Pt—η2-CS). Reactions of Pt(PPh3)4 with either the E- or Z-isomer of (p-CH3C6H4)(CH3S)CSO yields the corresponding E- or Z-coordination compound, Pt(PPh3)2[E-(p-CH3C6H4)(CH3S)CSO] or Pt(PPh3)2[Z-(p-CH3C6H4)(CH3S)CSO], indicating that the configuration of the sulfine ligand is retained upon coordination to the Pt(PPh3)2 unit. The compounds Pt(PPh3)2(XYCSO), containing reactive CX and/or CY bonds (X, Y = S-aryl, S-alkyl, Cl), undergo a rearrangement in solution to give complexes of the type PtX(PPh3)2(YCSO).  相似文献   

6.
Heterobimetallic complexes of formula [M{(PPh2)2C2B9H10}(S2C2B10H10)M′(PPh3)] (M=Pd, Pt; M′=Au, Ag, Cu) and [Ni{(PPh2)2C2B9H10}(S2C2B10H10)Au(PPh3)] were obtained from the reaction of [M{(PPh2)2C2B10H10}(S2C2B10H10)] (M=Pd, Pt) with [M′(PPh3)]+ (M′=Au, Ag, Cu) or by one‐pot synthesis from [(SH)2C2B10H10], (PPh2)2C2B10H10, NiCl2 ? 6 H2O, and [Au(PPh3)]+. They display d8–d10 intermetallic interactions and emit red light in the solid state at 77 K. Theoretical studies on [M{(PPh2)2C2B9H10}(S2C2B10H10)Au(PPh3)] (M=Pd, Pt, Ni) attribute the luminescence to ligand (thiolate, L)‐to‐“P2‐M‐S2” (ML′) charge‐transfer (LML′CT) transitions for M=Pt and to metal (M)‐to‐“P2‐M‐S2” (ML′) charge‐transfer (MML′CT) transitions for M=Ni, Pd.  相似文献   

7.
The reaction of [Pt(PEt3)3] with CH2I2 affords trans-[Pt(CH2PEt3)I(PEt3)2]I and is believed to proceed via the α-functionalised alkyl cis-[Pt(CH2I)I(PEt3)2], because similar ylides are obtained from cis- or trans-[PT(CH2X)(PPh3)2X] (XCl, Br, or I) with PR3 (PEt3, PBu3n, PMePh2, PEtPh2, or PPh3); cis-[Pd(CH2I)-I(PPh3)2] does not react with excess PPh3, but with PEt3 yields trans-[Pd(CH2PEt3)I(PPh3)2]I; the X-ray structure of trans-[Pt(CH2PEt3)I(PEt3)2]I (current R = 0.045) shows PtP(1) 2.332(7), PtP(2) 2.341(8), PtC 2.08(2), and PtI 2.666(2) Å, and angles (a) C(1)PtI, P(1), P(2): 176.9(8), 91.6(6), 93.4(6), (b) IPtP(1), P(2): 87.1(2), 88.5(2), and (c) P(1)P(2), 166.8(3), and (d) PtC(1)P(3), 118(1)°.  相似文献   

8.
The reaction of HgR2 (R = 2,5-C6H3Cl2; 2,3,4- and 2,4,6-C6H2Cl3; 2,3,4,5-,2,3,4,6- and 2,3,5,6-C6HCl4 and C6Cl5) with Pt(PPh3)3 gives the new stable compounds [(PPh3)2RPt(HgR)] containing PtHg bonds. When R contains an ortho chlorine atom (R = 2,5-C6H3Cl2; 2,3,4-C6H2Cl3 and 2,3,4,5-C6HCl4) refluxing xylene solutions of these compounds gives the complexes [PtR2-(PPh3)2], with simultaneous precipitation of mercury. In the other cases the initial compounds are recovered unaltered. All the compounds containing the PtHg bond react readily with CF3COOH to give a new series of compounds of formula [Pt(O2CCF3)R(PPh3)2].  相似文献   

9.
Abstract

While it might be expected that the availability of vacant coordination sites in the four coordinate acyl complexes trans[Pt(PPh3)2 (RCO)Cl] provides low energy pathways for alkyl and aryl migration and subsequent decarbonylation, the decarbonylation has been previously achieved only at elevated temperatures. The addition of SnCl2 greatly facilitates decarbonylation of [Pt(PPh3)2 (RCO)Cl] where R is CH3, C2 H5, Y[sbnd]C6 H4. Compounds of the type [Pt(PPh3)2 (RCO)SnCl3] and [Pt(PPh3)2 R(SnCl3)] have been isolated. The removal of SnCl2 from these compounds has been achieved with ethanol. A kinetic study of the decarbonylation of [Pt(PPh3)2 (RCO)SnCl3] (where R is CH3, C2 H5, Y[sbnd]C6 H4 for Y=H, CH3, CH3 O, NO2, Cl) is reported. The role of 3 and 5 coordinate intermediates in alkyl-aryl migrations in Pt(II) systems is discussed.  相似文献   

10.
The preparation of some new cationic aryldiazo complexes of platinum of formula trans-[Pt(N2Ar)(PEt3)2L]+, where N2Ar = N2C6H4F-m or -p and L = NH3, Py, Et3P or EtNC, is described. Protonation of these complexes gives the corresponding aryldiimide complexes trans-[Pt(NHNAr)(PEt3)2L]+, and reduction of the protonated complexes with molecular hydrogen in the presence of a catalyst gives the arylhydrazine complexes trans-[Pt(NH2NHAr)(PEt3)2L]+. Some of the spectroscopic properties of these new complexes are reported and discussed.  相似文献   

11.
Diphenylphosphorylazide N3P(O)(OPh)2 reacts with Pt(PPh3)3, Pt(PPh3)2(C2H4), trans-RhCl(CO)(PPh3)2, Ru(CO)3(PPh3)2, CoCl2(PPh3)2 and CuCl(PPh3)2 to give the azido complexes Pt(PPh3)2(N3)R, Pt(PPh3)2(N3)2R2, the urylene complex RhCl(PPh3)2(RNCONR) and the phosphine imine complexes Ru(CO)3(RPPh3)2, CoCl2(RNPPh3)2, CuCl(RNPPh3)2, respectively, (RP(O)(OPh)2). The oxidative addition of n-C6F13SO2N3 to Pt(PPh3)4 and Pt(PPh3)2(C2H4) affords the complexes Pt(PPh3)2(N3)R and Pt(PPh3)2(N3)2R2, respectively, (RSO2C6F13. The compounds are characterized by elemental analysis and by their IR spectra.  相似文献   

12.
Studies of Tridentate Coordination Ability of N-subsituted Salicylaldimines with 3d Elements. II. Ligands with Organophosphin and Organoarsin Groups in the side Chain N-substituted salicylaldiminates with tertiary phosphine or arsine groups in the side chain form 1,2-complexes with cations of the 3d elements. In the chelates Cu(ON2PPh2)2, Cu(ON2AsPh2)2, Cu(ON3AsPh2)2, Ni(ON2PPh2)2, Ni(ONSAsPh2)2, and Ni(ON3AsPh2)2 (about abbreviations see text) the central atoms have the coordination number 4, no coordination of the phosphine and arsine groups is observed. On the other hand the N-substituted salicylaldiminates are tridentate in the octahedral complexes Ni(ON2PEt2)2, Co(ON2PEt2)2, and Co(ON3AsPh2)2. The dissolution of the new chelates in pyridine is always connected with a structural change, the dissolution in benzene only in some cases. With nickel(II) a binuclear compound [Ni(ON2PPh)]2 C4H9OH containing the anion of the SCHIFF base between salicylaldehyde and β-aminoethyl phcnylphosphine, which is unstable in the free state, has been obtained.  相似文献   

13.
Perfluoronorbornadiene reacts with the compounds [M(PPh3)4] (M = Pt, Pd) and [IrCl(CO)(PMePh2)2] to give the adducts [(C7F8)M(PPh3)2] and [(C7F8)IrCl(CO)(PMePh2)2] in which one of the double bonds is coordinated to the metal atom. The platinum complex reacts further with [Pt(PPh3)4] to give [(C7F8){Pt(PPh3)2}2] having both double bonds coordinated to a Pt atom. The carbonylmetal anions [M?] react to form the mono-substitution products [(C7F7)M] (M = Mn(CO)5, Re(CO)5, Ir(CO)2(PPh3)2, Rh(CO)2(PPh3)2), but the use of an excess of [Fe(CO)2(η-C5H6)]? leads to substitution of one fluorine atom on each of the double bonds. The complex having M = Mn(CO)5 reacts with [Pt(PPh3)4] to afford the derivative [(C7F7){Mn(CO)4(PPh3)}{Pt(PPh3)2}], and the compound where M = Ir(CO)2(PPh3)2 undergoes an oxidative addition reaction with acetyl chloride. Oxidative coupling products have been isolated on UV irradiation of a mixture of perfluoronorbornadiene and [Fe(η4-CH2CRCHCH2)(CO)3] (R = H, Me), and under similar conditions the reaction with Fe(CO)5 affords [(C7F8)Fe(CO)4] in very low yield.  相似文献   

14.
Passage of CO through solutions of complexes (C6F5)2CoL2 gives carbonyl derivatives (C6F5)2CoL2(CO) (L2 = 2 PEt3, 2 P-n-Bu3, 2 PPh3, Ph2PCH2CH3PPh2). The properties of these compounds are described.The compounds are also produced by treating solutions of (C6F5)2Co-(dioxane)2 with CO, but a simultaneous reduction to (C6F5)Co(CO)4 takes place. Treatment of the latter complex with monodentate ligands gives substitution products (C6F5)Co(CO)3L (L = PEt3, P-n-Bu3, PPh3) all of which are monomeric, whereas the addition of Ph2PCH2CH2PPh2 gives the dimer (C6F5)(CO)2CoLLCo(CO)2(C6F5). The properties of these compounds are discussed.  相似文献   

15.
Reaction of the [(triphos)Co(E2S)]BF4 complexes (triphos = 1,1,1-tris(di-phenylphosphinomethyl)ethane, E = P or As) containing the P2S or As2S cyclic units trihapto3-bonded to the metal, with (C2H4)Pt(PPh3)2 involves insertion of the Pt(PPh3)2 moiety into a bond of the inorganic ring, yielding the compounds [(triphos)Co(E2S)Pt(PPh3)2]BPh4 (E = P or As), whose structures have been determined by X-ray diffraction studies.  相似文献   

16.
The complexes[Pt(C2H4)L2] (L = PPh3 or PMePh2) react with 1,4-diphenyl-buta-1,3-diyne to give, successively, mono- and di-platinum compounds [Pt-(PhC4Ph)L2] and [Pt2(PhC4Ph)L4]. Hexa-2,4-diyne and [Pt(C2H4)(PPh3)2] react similarly. In the di-platinum compounds both acetylenic linkages are η2-bonded to platinum atoms, as also occurs in the complex [Pt2{HC2(CH2)2C2H}(PPh3)4] obtained from hexa-1,5-diyne. Reaction of [Pt3(CN-t-Bu)6 with 1,4-diphenylbuta-1,3-diyne and hexa-2,4-diyne affords di-platinum complexes, shown by spectroscopic studies to have structures containing diplatinacyclobutene rings.  相似文献   

17.
Pt(PPh3)2(C2H4) reacts with monofluoroacetylene to give the π-complex Pt(PPh3)2(FCCH), and with dichloroacetylene under oxidative addition to yield Pt(PPh3)2(Cl)(ClCCl), the structure of which was determined by X-ray crystallography.  相似文献   

18.
The synthesis and spectroscopic characterisation of the new diborane(4) compounds B2(1,2-O2C6Cl4)2 and B2(1,2-O2C6Br4)2 are reported together with the diborane(4) bis-amine adduct [B2(calix)(NHMe2)2] (calix=Butcalix[4]arene). B–B bond oxidative addition reactions between the platinum(0) compound [Pt(PPh3)2(η-C2H4)] and the diborane(4) compounds B2(1,2-S2C6H4)2, B2(1,2-O2C6Cl4)2 and B2(1,2-O2C6Br4)2 are also described which result in the platinum(II) bis-boryl complexes cis-[Pt(PPh3)2{B(1,2-S2C6H4)}2], cis-[Pt(PPh3)2{B(1,2-O2C6Cl4)}2] and cis-[Pt(PPh3)2{B(1,2-O2C6Br4)}2] respectively, the former two having been characterised by X-ray crystallography. In addition, the platinum complex [Pt(PPh3)2(η-C2H4)] reacts with XB(1,2-O2C6H4) (X=Cl, Br) affording the mono-boryl complexes trans-[PtX(PPh3)2{B(1,2-O2C6H4)}] as a result of oxidative addition of the B–X bonds to the Pt(0) centre; the chloro derivative has been characterised by X-ray crystallography.  相似文献   

19.
The double cyanides of nickel and platinum form structures capable of enclosing also phenol, for example, as guest molecule. Such clathrates are Ni(NH3)2Pt(CN)4 2 C6H5OH and Ni(en)2Pt(CN)4 · 0.14 C6H5OH. In the case of the tetracyano complexes, different thermal stabilities of their clathrate compounds could be achieved by alteration of the constituents of the cage structure and also of the guest molecules. According to the thermal behaviour, the clathrates may be divided into two groups: those which release the guest molecules in the first step of thermal decomposition (Ni(NH3)2Pt(CN)4· 2 C6H5OH), and those which lose the guest component only after partial destruction of the host cage (Ni(en)2Pt(CN)4 · 0.14 C6H5OH). The temperature ranges of loss of the guest component may determine the interval for their use in sorptive experiments. The temperature range for release of phenol from Ni(NH3)2Pt(CN)4 · · 2 C6H5OH is 55–244°, and from Ni(en)2Pt(CN)4 · 0.14 C6H5OH is 139–284°. The model host molecules NiPt(CN)4 · 6 H2O and Ni(en)3Pt(CN)4 · 3 H2O were also studied by thermal analysis.  相似文献   

20.
In the title compound, [Pt(C18H15P)(C28H28P2S)]­(ClO4)2·­C3H6O or [Pt(PPh3)(PSP)](ClO4)2·CH3COCH3, where PSP is the potentially tridentate chelate ligand bis(2‐di­phenyl­phosphinoethyl) sulfide, all three donor groups of the PSP ligand are coordinated to the central Pt atom, with Pt—P = 2.310 (1) Å and Pt—S = 2.343 (1) Å. The fourth coordination site is occupied by the P donor of the tri­phenyl­phosphine ligand [Pt—P = 2.289 (1) Å]. The complex cation has exact mirror symmetry, with the S atom, the Pt atom and the P atom of the PPh3 ligand in the mirror plane. The Pt atom has a distorted square‐planar coordination geometry. A π–π interaction is present between the phenyl rings of the PPh3 ligand and the terminal –PPh2 group of the PSP chelate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号