首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The initial steps of copper electrocrystallization process from aqueous solutions have been studied at DFT level of theory. It has been shown that Cu(H2O) unit is the final product of Cu2+-ions electroreduction. From this particle clusters Cun·aq are formed and grow. Aggregation of copper atoms to the Cun·aq clusters consists of two steps. The first step includes condensation of Cu(H2O) units to hydrated clusters Cun(H2O)n (n = 2–6). At the second step bonding of Cu(H2O) particles is accompanied by dehydration of clusters yielding Cun(H2O)m structures (n > m). Cluster Cu7·aq has been singled out as key structure based on calculated values of energies and Cu–Cu bond distances of Cun·aq clusters. This cluster is of D5h symmetry which is typical for copper microcrystals formed from aqueous solutions in electrocrystallization processes on foreign surface. This key particle could be considered as a critical nucleus. Number of copper atoms therein matches average dimension of critical nucleus.  相似文献   

2.
The recrystallization of ultradisperse copper chemically deposited onto a sulfo cation exchanger matrix was studied by the potentiometric method. The stationary value of the electrode potential of the copper-sulfo cation exchanger composite was established during a long period of time, which depended on the ionic form of the composite (H+, Cu2+, or Na+), solution composition (CuSO4, H2SO4, and Na2SO4), and solution concentration. Recrystallization was favored by copper(II) counterions, which entered the composite as a result of ion exchange, nonexchange absorption of copper sulfate, or preliminary composite transformation into the Cu2+ form. In the quasi-equilibrium state, the concentration of copper(II) counterions was maintained at a high level by the Donnan interfacial potential. At all the copper(II) sulfate concentrations used, the potential of the Cu2+/Cu ion—metal pair in the ion-exchange matrix remained at virtually the same level, which was indicative of the stable state of copper particles. In the absence of an external source of copper ions, recrystallization was significantly hindered; therefore, the potential exhibited only a slight drift. Copper ions formed in the solution of small crystals were localized in the vicinity of ionogenic matrix centers, which decreased the mobility of these particles as counterions; therefore, the dispersity of particles remained unchanged.  相似文献   

3.
A composite of graphene–cuprous oxide (Cu2O) was prepared using copper acetate-adsorbed graphene oxide (GO) sheets as precursors. In this composite, in-situ formed Cu2O particles were derived from the adsorbed copper acetate which attached to graphene sheets and prevented the aggregation of the reduced graphene oxide sheets. The as-synthesized Cu2O crystals were cube-like particles distributed randomly on the sheets due to the template effect of GO, consequently forming a graphene–Cu2O cubes composite. A preliminary study on the electrochemical behavior of the graphene–Cu2O composite used as anode material for lithium ion batteries was carried out.  相似文献   

4.
Syntheses of copper(II) complexes of 20-membered and 15-membered aza macrocycles 1,3,6,8,11,13,16,18-octaaza-2,7,12,17-tetrachlorocycloeicosane (OTCE, [20]-N8) and 1,3,6,8, 11,13-hexaazacyclopentadecane (HCPD, [15]-N6) involving metal template condensation between 1,2-diaminoethane, trichloromethane and dichloromethane, respectively, are reported. Formulation of [Cu4(OTCE)(H2O)8]Cl8 and [Cu3(HCPD)(H2O)6]Cl6 · 2H2O and the ligand hydrochlorides OTCE · 8HCl and HCPD · 6HCl are supported by elemental analyses, conductivity measurements, and spectral studies. For a comparative cavity size effect on the stability constant, potentiometric measurements on the copper complexes of the generated macrocycles [15]-N6 and [20]-N8 and the structurally related larger macrocycle 1,3,6,8,11,13,16,18,21,23-decaaza-2,2,7,7,12,12,17,17,22,22-decachlorocyclopentacosane (DDCP, [25]-N10, prepared recently) have been performed in aqueous solution at 25°C (μ = 0.1 M KNO3). Very high stability constants obtained for reaction Cu2+ + A ? CuA2+ (A = ligand, log K = 20.51 and 25.87, respectively, for OTCE and DDCP systems) are a reflection on the folding of the ligand to provide a small cavity suitable for fitting of the copper ion. Further, a high equilibrium constant value for CuA2+ + Cu2+ ? Cu2A4+ (OTCE system, log K = 14.59) or Cu2A4+ + Cu2+ ? Cu3A6+ (DDCP system, log K = 16.69) is due to suitable fitting of two and three copper ions in the 20-membered and 25-membered ring cavity of OTCE and DDCP, respectively.  相似文献   

5.
DFT calculations (M06, PBE0/Def2-TZVP) of coordination compounds used in reactions of selective oxidation of thiols to disulfides were performed. Primary active centers of the catalysts are polynuclear scaffolds {L2M(μ-OH)2ML2}2+ and {L2M(μ-OH)2M′(μ-OH)2ML2}2+ (M = CuI, CuII, PdII; M' = CuII; L = NH3). CuII ions in combination with PdII ions are capable of formation of polynuclear active center {PdII(μ-OH)2CuII(μ-OH)2PdII}2+ bringing together a large number of mutually oriented RS groups and thus affecting the rate of formation of disulfide R2S2.  相似文献   

6.
Stabilization of Cu2+ ions in concentrated aqueous ammonia solutions of copper nitrate in a wide range of ammonium ion concentrations has been studied by EPR and electronic absorption spectroscopy. Three types of Cu2+ associates with different types of orbital ordering have been identified. The ammonium ion concentration in a solution has a decisive effect on the type of orbital ordering of Cu2+ ions in associates. In all cases, Cu2+ ordering in associates is caused by the existence of bridging OH groups in the axial and equatorial positions of [Cu(NH3) n (H2O)6 ? n ]2+ complexes (n < 6). At a high concentration of ammonium ions, weakly bound associates of tetramminecopper with the $d_{x^2 - y^2 }$ ground state are formed. In solutions with low ammonium concentrations, bulky associates with the $d_{y^2 }$ and $d_{x^2 - z^2 }$ ground states and associates of Cu2+ ions with the $d_{x^2 - y^2 }$ ground state with hydroxyl groups in the equatorial plane and axial water molecules are formed.  相似文献   

7.
Photosensitive oxide layers are found to develop on copper electrode exposed to solutions containing Cu(II), different ligands, and K2SO4 as a supporting electrolyte. Two mechanisms of Cu2O formation are discussed: corrosion of copper in naturally aerated Cu(II)-free solutions, and interaction between Cu and Cu2+ yielding intermediate Cu+ ions. Oxide layers formed in the supporting electrolyte at pH 5 and 7 exhibit n-type conduction; the n–p transition is observed at pH 10. An addition of ligands suppresses the oxide formation. The correlation between the photoelectrochemical effects and the stability of Cu(II) complexes is revealed: the higher the complexation degree, the lower the level of photoresponse. A model of nonuniform Cu2O-containing layer with predominant n- and p-type properties at copper/oxide and oxide/solution interfaces, respectively, is discussed.  相似文献   

8.
A spectroscopic investigation of the products formed in the reaction of emeraldine base (EB-PANI) with copper(II) ions in dimethylacetamide (DMA) is presented. It is well known that metal cations can dope emeraldine base polyaniline (EB-PANI) through a pseudo-protonation reaction. Resonance Raman, UV–vis-NIR, and EPR data, obtained for Cu2+/EB-PANI solutions prepared using CuCl2·2 H2O, Cu(NO3)2· 3 H2O or Cu(CH3COO)2·H2O as Cu2+ sources, showed that the species formed in reactions of EB-PANI and Cu2+ ions are dependent on the anions of the copper salt employed. EPR spectra pointed out that the environments of Cu2+ ions with acetate, chloride or nitrate as anions in DMA solution are distinct. Resonance Raman and UV–vis-NIR data demonstrated that the main reactions are the oxidation of EB-PANI to pernigraniline base (PB-PANI) and doping of EB-PANI to ES-PANI (emeraldine salt) when a direct coordination of Cu2+ ions to PANI exists. With nitrate as very weak coordinating anion, ES-PANI is formed preferentially. When copper chloride is used, both oxidation and doping of EB-PANI are verified. Conversely with acetate, the dimeric cage structure of this copper salt is preserved in solution, and oxidation of EB-PANI to PB-PANI is the only observed reaction. These results demonstrate the possibility of modulating the products of reaction between Cu2+ ions and EB-PANI in DMA solution by changing the counter ion of the Cu2+ source.  相似文献   

9.
Complex [Cu(tbt)Cl2]n (tbt = 1-tert-butyl-1H-tetrazole) was prepared by reaction of tbt with copper(II) chloride in solution. According to single-crystal X-ray analysis, this complex presents 1D coordination polymer, formed at the expense of double chlorido bridges between neighboring pentacoordinate copper(II) cations. 1-tert-Butyl-1H-tetrazole acts as monodentate ligand coordinated by CuII cations via the heteroring N4 atoms. The temperature-dependent magnetic susceptibility measurements of novel complex [Cu(tbt)Cl2]n as well as described previously 1D coordination polymer [Cu(tbt)2Cl2]n, and linear trinuclear complex [Cu3(tbt)6Br6], were carried out. Magnetic studies revealed that the copper(II) ions were weakly ferromagnetically coupled in polymeric copper(II) chloride complexes, whereas complex [Cu3(tbt)6Br6] showed antiferromagnetic coupling.  相似文献   

10.
An imidazole‐terminated hyperbranched polymer with octafunctional POSS branching units denoted as POSS‐HYPAM‐Im was prepared by the polymerization of excess amounts of tris(2‐aminoethyl)amine with the first‐generation methyl ester‐terminated POSS‐core poly(amidoamine)‐typed dendrimer, reacting with methyl acrylate, and ester‐amide exchange reaction with 3‐aminopropylimidazole. The imidazole‐terminated hyperbranched poly(amidoamine) denoted as HYPAM‐Im was also synthesized with 1‐(3‐aminopropyl)imidazole from a methyl ester‐terminated hyperbranched poly(amidoamine) by the ester‐amide exchange reaction. The transmittance of the POSS‐HYPAM‐Im solution drastically decreased when the solution pH was greater than 8.2. On the other hand, the transmittance of the HYPAM‐Im solution gradually decreased when the solution pH at 8.5 and was greater than 9. Spectrophotometric titrations of the hyperbranched polymer aqueous solutions with Cu2+ ions indicated the variation of the coordination modes of POSS‐HYPAM‐Im from the Cu2+–N4 complex to the Cu2+–N2O2 complex and the existence of the only one complexation mode of Cu2+–N4 between Cu2+ ion and HYPAM‐Im with increasing the concentrations. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2695–2701  相似文献   

11.
Сopper-containing catalysts supported on amorphous silica modified by amines were prepared using the chemical reduction method. The morphology of copper particles and their chemi calstate depend on the type of the reducing agent used. The use of ascorbic acid results in the formation of monodisperse submicron Cu0 particles 200—300 nm in size, whereas Cu0 particles with a size ranging from 50 to 150 nm are formed when hydrazine hydrate was used. The morphology and chemical state of the copper particles reduced with sodium borohydride depend substantially on the amount of the reducing agent: Cu0 nanoparticles 10—15 nm in size are formed if the reducing agent is an excess, layered Cu2O plates are formed at the equimolar amount of sodium borohydride, and a decrease in the amount of sodium borohydride results in spherical Cu2O particles. All the catalysts synthesized in the flow regime showed higher activity in the catalytic cycloaddition of azides to alkynes than the commercially available copper catalysts.  相似文献   

12.
Colloidal aqueous solution of zerovalent copper (Cu(0)) nanoparticles were prepared from the Cu2+ ions coordinated with polyethyleniminated polyoxypropylenediamines (D400(EI) x ) followed by chemical reduction of NaBH4. Aqueous solution of copper clusters formed in the presence of D400(EI)8 with a loading ratio of [EI]/[Cu2+] = 3 were stable without precipitation for standing more than 1 month. The protective effects of D400(EI) x and the particle size of the resulted Cu nanoparticle are regulated by the attachments of ethylenimine (EI) groups per polymer backbone and the normality ratio of [EI]/[Cu2+] used. It is found that the more EI-content per polymer backbone results in the smaller particle size and the narrower size dispersity of the colloidal Cu(0) particles, and the average particle size of 5.07 nm with standard deviation of 0.86 nm was obtained in the presence of D400(EI)8 with the ratio of [EI]/[Cu2+] = 3. As the polymer concentration of D400(EI)8 increases (the increase of [EI]/[Cu2+]), the average particle size of the prepared Cu(0) nanoparticle slightly changes, but interestingly, the size dispersity gradually decreases, where the standard deviation for the concentration at [EI]/[Cu2+] = 5 is 0.82 nm approaching that for monodispersed nanoparticles (0.5 nm).  相似文献   

13.
The crystal structure of the copper(II) chloride complex with 3,5-dimethyl-4-amino-1,2,4-triazole has been determined by XRD. The crystal is cubic, a = 17.754(4) å, Vcell = 5596(1) å3, space group Pa3, Z = 8, dcalc = 1.842 g/cm3, C12H28Cl6Cu3N12O2, Syntex P21, λCuKa, 3277 Ihkl measured, including 936 independent nonextinct Ihkl > 0 (Rint = 0.0557), an absorption correction applied using crystal habit data (Μ = 82.4 cm1), R(F) = 0.0711, R(wF2) = 0.1899 for 831 Fhkl > 4Σ(F). The copper atoms are linked by three bridging bidentate ligands into a regular triangle; the ligands are coordinated by the N1 and N2 atoms of the triazole cycle and by the Μ3-bridging oxygen atom. The coordination polyhedron of copper is a heavily distorted octahedron (2N, O, Cl) + Cl+O. The chemical formula of the compound is discussed. An unambiguous choice between the formulas (H3O)[(Μ3-OH)(Μ,η2-L)3Cu3Cl6] and [(Μ3-OH)(Μ,η2-L)22, η2-LH)Cu3Cl6]·H2O is impossible, since the hydrogen atoms were not localized experimentally.  相似文献   

14.
Isotherms of copper cation sorption by H-ZSM-5 zeolite from aqueous and aqueous ammonia solutions of copper acetate, chloride, nitrate, and sulfate are considered in terms of Langmuir’s monomolecular adsorption model. Using UV-Vis diffuse reflectance spectroscopy, IR spectroscopy, and temperatureprogrammed reduction with hydrogen and carbon monoxide, it has been demonstrated that the electronic state of the copper ions is determined by the ion exchange and heat treatment conditions. The state of the copper ions has an effect on the redox properties and reactivity of the Cu-ZSM-5 catalysts in the selective catalytic reduction (SCR) of NO with propane and in N2O decomposition. The amount of Cu2+ that is sorbed by zeolite H-ZSM-5 from aqueous solution and is stabilized as isolated Cu2+ cations in cationexchange sites of the zeolite depends largely on the copper salt anion. The quantity of Cu(II) cations sorbed from aqueous solutions of copper salts of strong acids is smaller than the quantity of the same cations sorbed from the copper acetate solution. When copper chloride or sulfate is used, the zeolite is modified by the chloride or sulfate anion. Because of the presence of these anions, the redox properties and nitrogen oxides removal (DeNO x ) efficiency of the Cu-ZSM-5 catalysts prepared using the copper salts of strong acids are worse than the same characteristics of the sample prepared using the copper acetate solution. The addition of ammonia to the aqueous solutions of copper salts diminishes the copper salt anion effect on the amount of Cu(II) sorbed from these solutions and hampers the nonspecific sorption of anions on the zeolite surface. As a consequence, the redox and DeNO x properties of Cu-ZSM-5 depend considerably on the NH4OH/Cu2+ ratio in the solution used in ion exchange. The aqueous ammonia solutions of the copper salts with NH4OH/Cu2+ = 6–10 stabilize, in the Cu-ZSM-5 structure, Cu2+ ions bonded with extraframework oxygen, which are more active in DeNO x than isolated Cu2+ ions (which form at NH4OH/Cu2+ = 30) or nanosized CuO particles (which form at NH4OH/Cu2+ = 3).  相似文献   

15.
The 1-D complex with high-nuclearity [{La6Cu26gly18( 3-OH)30(H2O)24(ClO4)} (ClO4)21·26H2O] n was synthesized and characterized by X-ray diffraction analysis. The inner core of the basic unit is an octahedron with La3+ ions at its vertexes and Cu2+ ions at the meddles of the twelve edges. Two additional Cu2+ ions are connected to each La3+ vertex to form a [La6Cu24] unit, and adjacent units are interconnected by a pair [Cu(gly)2] bridges to give a polymeric chain structure.  相似文献   

16.
A 2-D coordination polymer, [Cu(1,2-en)23-I)2Cu22-I)2]n (1), was formed at room temperature by in situ insertion of [Cu(1,2-en)2]2+ guests into 1-D chains of a [Cu2I4]2? host [1,2-en?=?1,2-diaminoethane]. The structure of the complex was confirmed by single-crystal X-ray diffraction study. The shortest copper(I)–copper(I) distance within the complex is 2.89?Å.  相似文献   

17.
The solutions containing one of the copper salts (CuCl2, Cu(ClO4)2, Cu(NO3)2, and CuSO4) and one of the non-steroidal anti-inflammatory drugs (NSAIDs, ibuprofen, ketoprofen or naproxen) were analyzed by electrospray ionization mass spectrometry. Three of the salts, namely CuCl2, Cu(ClO4)2 and Cu(NO3)2, yielded binuclear complexes of drug:metal stoichiometry 1:2. Existence of the complexes of such stoichiometry has not been earlier observed. For copper(II) chloride the complexes (ions of the type [M-HCOOH+Cu2Cl]+ and [M+Cu2Cl]+, M stands for the drug molecule) were formed in the gas phase. When copper(II) perchlorate or copper(II) nitrate was used, the observed binuclear copper complexes (ions of the type [M-H+Cu2(ClO4)2+CH3OH]+, [M-H+Cu2(ClO4)2]+ and [M-H+Cu2(NO3)2+CH3OH]+, [M-H+Cu2(NO3)2]+) were observed at low cone voltage, thus these complexes must have already existed in the solution analysed. Therefore, such complexes may also exist under physiological conditions.   相似文献   

18.
The review discusses the experimental data on the unusual mechanism of the reduction of copper cations from the copper chromite, CuCr2O4, structure. Treatment of copper chromite in hydrogen at 180–370°C is not accompanied by water formation but leads to absorption of hydrogen by the oxide structure with simultaneous formation of metallic copper as small flat particles which are epitaxially bound to the oxide. This process is due to the redox reaction Cu2+ + H2 → Cu0 + 2H+; the protons are stabilized in the oxide phase, which is confirmed by neutron diffraction studies. The reduced copper chromite which contains absorbed hydrogen in its oxidized state and the metallic copper particles epitaxially bound to the oxide phase structure exhibit catalytic activity in hydrogenation reactions.  相似文献   

19.
The properties of complexes formed on HZSM-5 and CuZSM-5 zeolites in the course of ammonia and nitromethane adsorption are studied. Ammonia adsorbs on CuZSM-5 and forms two species, which decompose at different temperatures T dec. One is due to the formation of the Cu2+(NH3)4 complex (T dec = 450 K), and the other is assigned to ammonia adsorbed on copper(II) compounds, Cu2+O and Cu2+–O2––Cu2+, or CuO clusters (T dec = 650–750 K). Ammonia adsorption on Cu+ and Cu0 is negligible compared with that on the Brönsted acid sites and copper(II). Nitromethane adsorbed on HZSM-5 and CuZSM-5 at 400–500 K transforms into a series of products including ammonia. Ammonia also forms complexes with the Brönsted acid sites and copper(II) similar to those formed in the course of adsorption from the gas phase, but the Cu2+(NH3)4 complexes on CuZSM-5 are not observed. Possible structures of ammonia and nitromethane complexes on Brönsted acid sites and the Cu2+ cations in zeolite channels are discussed. The role of these complexes in selective NO x reduction by hydrocarbons over the zeolites is considered in connection with their thermal stability.  相似文献   

20.
One-pot reaction of tris(2-aminoethyl)amine (TREN), [CuI(MeCN)4]PF6, and paraformaldehyde affords a mixed-valent [TREN4CuIICuICuI3-OH)](PF6)3 complex. The macrocyclic azacryptand TREN4 contains four TREN motifs, three of which provide a bowl-shape binding pocket for the [Cu33-OH)]3+ core. The fourth TREN caps on top of the tricopper cluster to form a cryptand, imposing conformational constraints and preventing solvent interaction. Contrasting the limited redox capability of synthetic tricopper complexes reported so far, [TREN4CuIICuICuI3-OH)](PF6)3 exhibits several reversible single-electron redox events. The distinct electrochemical behaviors of [TREN4CuIICuICuI3-OH)](PF6)3 and its solvent-exposed analog [TREN3CuIICuIICuII3-O)](PF6)4 suggest that isolation of tricopper core in a cryptand enables facile electron transfer, allowing potential application of synthetic tricopper complexes as redox catalysts. Indeed, the fully reduced [TREN4CuICuICuI3-OH)](PF6)2 can reduce O2 under acidic conditions. The geometric constraints provided by the cryptand are reminiscent of Nature''s multicopper oxidases (MCOs). For the first time, a synthetic tricopper cluster was isolated and fully characterized at CuICuICuI (4a), CuIICuICuI (4b), and CuIICuIICuI (4c) states, providing structural and spectroscopic models for many intermediates in MCOs. Fast electron transfer rates (105 to 106 M−1 s−1) were observed for both CuICuICuI/CuIICuICuI and CuIICuICuI/CuIICuIICuI redox couples, approaching the rapid electron transfer rates of copper sites in MCO.

Geometric constraints and site isolation provided by the cryptand enable reversible redox of tricopper μ-oxo cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号