首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of oxygenic photosynthesis, respiration and photoperception are connected with the appearance of cyanobacteria. The key compounds, which are involved in these processes, are tetrapyrroles: open chain — bilins and cyclic — chlorophylls and heme. The latter are characterized by their covalent bond with the apoprotein resulting in the formation of biliproteins. This type of photoreceptors is unique in that it can perform important and opposite functions—light-harvesting in photosynthesis with the participation of phycobiliproteins and photoperception mediated by phycochromes and phytochromes. In this review, cyanobacterial phycobiliproteins and phytochrome Cph1 are considered from a comparative point of view. Structural features of these pigments, which provide their contrasting photophysical and photochemical characteristics, are analyzed. The determining factor in the case of energy migration with the participation of phycobiliproteins is blocking the torsional relaxations of the chromophore, its D-ring, in the excited state and their freedom, in the case of phytochrome photoisomerization. From the energetics point of view, this distinction is preconditioned by the height of the activation barrier for the photoreaction and relaxation in the excited state, which depends on the degree of the chromophore fixation by its protein surroundings.  相似文献   

2.
The complete resolution of the protein components of phycobilisome from cyanobacterium Synechocystis 6803, together with their detection and determination of molecular mass, has successfully been obtained by the combined use of HPLC coupled on-line with electrospray ionization mass spectrometry. The method proposed consists of the isolation of the light-harvesting apparatus of cyanobacterium, by simply breaking cells in low-ionic-strength buffer, and subsequent injection of the total mixture of phycobilisomes into a C4 reversed-phase column. Identification of proteins was performed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the samples collected from HPLC or by measuring the protein molecular mass coupling HPLC with mass spectrometry. The latter method allows the simultaneous separation of the phycobiliproteins, phycocyanin and allophycocyanin, from linker proteins and their identification, which due to their similar amino acid sequence and their similar hydrophobicity, might not be detected by denaturing SDS-PAGE. Under the experimental conditions used, the pigment phycobilin is not removed from the polypeptide backbone, determining the hydrophobicity of the phycoproteins and hence their interaction with the reversed-phase column as well as in determining the protein-protein interaction into the phycobilisome aggregation. Removal of the pigment, in fact, abolishes HPLC separation, emphasizing the essential role that the pigments play in maintaining the unusual tertiary structure of these proteins.  相似文献   

3.
Phycobiliproteins play important roles in photomorphogenesis and photosynthesis. The light-absorbing chromophores of the phycobiliproteins are linear tetrapyrroles (bilins) very similar in structure to the mammalian bile pigments. 5-Aminolaevulinate (5-ALA) is the first committed intermediate in phycobilin synthesis. The biosynthesis of 5-ALA, destined for phycobilins, occurs via the five-carbon pathway, now well established for tetrapyrrole synthesis in plants and distinct from the mammalian pathway. The phycobilins are formed by reduction of biliverdin which results from the synthesis and degradation of haem. This haem is an essential intermediate in the biosynthesis of phycobilins. Phycocyanobilin, the blue-green pigment found in certain algae and cyanobacteria, is formed from biliverdin via phytochromobilin, the chromophore of phytochrome. This leads to the likelihood that phytochromobilin is formed as an end product, or intermediate, in the synthesis of all phycobilins.  相似文献   

4.
Phytochromobilin (PΦB), the chromophore of plant phytochromes, is difficult to isolate because phytochromes occur at very low concentrations in plants. It is, therefore, frequently replaced in plant phytochrome studies by phycocyanobilin, which is abundant in cyanobacteria. PΦB is also an attractive chromophore for far‐red emitting chromoproteins. In this work, we design and optimize a simple method to efficiently isolate useful quantities of PΦB: The chromophore is generated in Escherichia coli and transiently bound to a tailored chromophore‐binding domain of ApcE2, the apo‐protein of a core‐membrane linker, from which it can subsequently be released. The ease and effectiveness of this method hinges not only on the enhanced biosynthesis of PΦB in the presence of the ApcE2 construct from Synechococcus sp. PCC7335, but also on the noncovalent binding of the pigment to its apo‐protein. The isolated PΦB was successfully incorporated into phytochrome‐related assemblies, and furthermore, the noncovalently bound PΦB could be transferred directly from the ApcE2 construct to the apo‐proteins of phytochromes, cyanobacteriochromes and phycobiliproteins, without loss of relevant biological activity.  相似文献   

5.
Glycine betaine (GB) is a biologically important small molecule protecting cells, proteins and enzymes in vivo and in vitro under environmental stresses. Recently, it was found that GB could also relax the structure and inactivate the function of phycobiliproteins and phycobilisome (PBS), a kind of supra-molecular complexes, in cyanobacterial cells. The molecular mechanisms for the opposite phenomena are quite ambiguous. Taking PBS and a trimeric or monomeric C-phycocyanin (C-PC) as models, the molecular mechanism for the interaction of GB with supra-molecular complexes or nuclear proteins was investigated. The energetic decoupling of PBS components induced by GB suggests that the PBS core-membrane linking polypeptide was the most sensitive site while the rod-core linker was the next. Biochemistry analysis proves that PBS structure was loosened but not dissociated into the components. On the basis of the results and structure knowledge, it was proposed that GB screened the electrostatic attraction of the opposite charges on a linker and a protein leading to a much looser structure. It was observed that GB induced a spectral blue shift for trimeric C-PC but a red shift for a monomeric C-PC (a nuclear protein), which were ascribed to GB’s screening of the electrostatic attraction of a linker to a protein and strengthening of the hydrophobic interaction between C-PC monomers. The trimers and monomers’ forming of the same products under high concentration of GB was ascribed to a compromise of the opposite interaction forces.  相似文献   

6.
Carotenoids are essential pigments in natural photosynthesis. They absorb in the blue–green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This process is an example of singlet–singlet energy transfer and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. In this case, triplet–triplet energy transfer from (bacterio-)chlorophyll to carotenoid plays a key role in this photoprotective reaction. In the light-harvesting pigment–protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role, namely the structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined to provide a basis from which to describe the photochemistry of carotenoids, which underlies most of their important functions in photosynthesis. Then, the possibility to utilize the functions of carotenoids in artificial photosynthetic light-harvesting systems will be discussed. Some examples of the model systems are introduced.  相似文献   

7.
The high light‐induced bleaching of photosynthetic pigments and the degradation of proteins of light‐harvesting complexes of PSI and PSII were investigated in isolated thylakoid membranes of Arabidopsis thaliana, wt and lutein‐deficient mutant lut2, with the aim of unraveling the role of lutein for the degree of bleaching and degradation. By the means of absorption spectroscopy and western blot analysis, we show that the lack of lutein leads to a higher extent of pigment photobleaching and protein degradation in mutant thylakoid membranes in comparison with wt. The highest extent of bleaching is suffered by chlorophyll a and carotenoids, while chlorophyll b is bleached in lut2 thylakoids during long periods at high illumination. The high light‐induced degradation of Lhca1, Lhcb2 proteins and PsbS was followed and it is shown that Lhca1 is more damaged than Lhcb2. The degradation of analyzed proteins is more pronounced in lut2 mutant thylakoid membranes. The lack of lutein influences the high light‐induced alterations in organization of pigment–protein complexes as revealed by 77 K fluorescence.  相似文献   

8.
Open-chain tetrapyrroles are ubiquitous and abundant in living organisms (algae, animals, bacteria, and plants), including examples such as bilirubin, biliverdin, phycocyanobilin, phycoerythrobilin, and urobilin. The open-chain tetrapyrroles, collectively termed bilins, arise from biosynthesis or degradation of tetrapyrrole macrocycles. Bilins are now known to play a wide variety of biological roles encompassing light-harvesting (in phycobiliproteins), photomorphogenesis, signaling, and redox chemistry. The absorption spectra of bilins spans the ultraviolet (UV), visible, to near-infrared (NIR) regions depending on the degree of conjugation, thereby providing a wide range of colors from red/orange to blue/green. The fluorescence intensity of bilins is often quite low and hence fewer spectra are available, but can be increased substantially by structural rigidification, as evidenced by the wide use of biliproteins as fluorescent labels. The present article describes a database of absorption and fluorescence spectra of bilins from natural and synthetic origins for 220 compounds (270 absorption and 13 fluorescence spectral traces). Spectral traces of bilins published over the past ∼50 years have been digitized and assembled along with information concerning solvent, photochemical properties (molar absorption coefficient and fluorescence quantum yield), and literature references. The spectral traces (xy-coordinate data files) can be viewed, downloaded, and accessed at www.photochemcad.com. The accessibility of spectral traces in digital format should facilitate identification and quantitative calculations of interest in diverse scientific areas.  相似文献   

9.
To understand the cause of discoloration of the sea laver "nori," which is found in the Ariake Sea, the concentrations of pigments and elements in the normal and discolored laver samples were determined. In the discolored samples, a decrease in all of the pigments, chlorophyll a and carotenoids, and proteinous pigments, phycobiliproteins, was clearly observed. This was accompanied by a decrease in the content of Fe, Zn, Mn, Cu, and P. Good correlations between these elements and chlorophyll a, as well as between these elements and phycobiliproteins, were confirmed, indicating that, in addition to the deficiency of nitrogen and phosphorus, the deficiency of trace elements (Fe, Zn, Mn, and Cu), which are specifically required for photosynthesis, could be a reason for the discoloration of nori. The cause of elemental deficiency is also discussed.  相似文献   

10.
The visual pigment rhodopsin presents an astonishing photochemical performance. It exhibits an unprecedented quantum yield (0.67) in a highly defined and ultrafast photoisomerization process. This triggers the conformational changes leading to the active state Meta II of this G protein-coupled receptor. The responsible ligand, retinal, is covalently bound to Lys-296 of the protein in a protonated Schiff base. The resulting positive charge delocalization over the terminal part of the polyene chain of retinal creates a conjugation defect that upon photoexcitation moves to the opposite end of the polyene. Shortening the polyene as in 5,6-dihydro- or 7,8-dihydro analogues might facilitate photoisomerization of a 9-Z and an 11-Z bond. Here we describe pigment analogues generated with bovine opsin and 11-Z 7,8-dihydro retinal or 9-Z 7,8-dihydro retinal. Both isomers readily generate photosensitive pigments that differ remarkably in spectral properties from the native pigments. In addition, in spite of the more flexible 7,8 single bond, both analogue pigments exhibit strikingly efficient photoisomerization while largely maintaining the activity toward the G-protein. These results bear upon the activation of ligand-gated signal transducers such as G protein-coupled receptors.  相似文献   

11.
The phycobiliproteins (PBSs) are large pigment proteins found in certain algae that play a central role in harvesting light energy for photosynthesis. Phycocyanin (PC) is one type of PBSs that gains increasing attention owing to its various biological and pharmacological properties. In this paper, an expression vector containing five essential genes in charge of biosynthesis of cyanobacterial C-phycocyanin (C-PC) holo-α subunit (holo-CpcA) was successfully constructed resulting in over-expression of a fluorescent holo-CpcA in E. coli BL21. The vector harbored two cassettes: one cassette carried genes hox1 and pcyA required for conversion of heme to phycocyanobilin (PCB), and the other cassette carried cpcA encoding CpcA along with cpcE and cpcF both of which were necessary and sufficient for the correct addition of PCB to CpcA. The vector system contained a His-tag for protein purification. The purified protein showed correct molecular weight on SDS-PAGE gel and emitted orange fluorescence by UV excitation. The maximum peak of absorbance spectrum was at 623 nm, and the maximum peak of fluorescence emission and excitation were at 648 and 633 nm, respectively, which were similar to those of native C-PC. This study provides an efficient method for large-scale production of the fluorescent holo-CpcA in biotechnological applications. Guan and Qin contributed equally to this study.  相似文献   

12.
徐秀灵  李姮  谢杰  赵井泉 《中国科学B辑》2009,39(11):1409-1414
甘氨酸甜菜碱是具有重要生物学意义的生物小分子,它可以保护细胞、蛋白和酶的结构功能完整性,也会导致蛋白超分子结构松散、功能钝化,这两种相反作用的分子机制尚不清楚.本文以超分子藻胆蛋白和藻胆体为模型,证明甜菜碱导致超分子藻胆体结构松散、各组份能量失耦合,最敏感的作用位点是核.膜连接多肽,其次是杆一核连接多肽.C-藻蓝蛋白三聚体与单体对甜菜碱的相应完全不同,前者结构松散而后者相对聚集.甜菜碱屏蔽静电吸引力导致结构松散但强化基元蛋白之间的疏水作用力是两种相反现象的本质,甜菜碱最终导致C-藻蓝蛋白三聚体和单体相同的光谱特征是两种机制的“折中”.  相似文献   

13.
Abstract— An investigation was made of both the composition of and mechanism of photo-protection by the carotenoid pigments of Sarcina lutea ATCC 9341a and three induced mutants.
The wild-type and mutants 2a and 4b were each found to contain three major pigment fractions, each fraction consisting of a single pigment having identical absorption maxima but differing from each other in chromatographic mobility. Although the mutants contain the same kinds of pigments as does the wild-type, the mutant cells contain less pigment per cell than does the wild-type. The third mutant, 93a, contains no colored carotenoids.
It was found that there were changes in both the absolute and relative amounts of the various pigment fractions when cultures of wild-type, mutants 2a and 4b, grown in nutrient broth in the dark, were examined during the logarithmic and stationary phases of the growth curve. In addition, changes were observed in the pigments when the cells were exposed to light in buffer. These changes were similar in the wild-type and in mutant 2a, but were quite different in mutant 4b. Studies of photokilling curves suggested that these changes in amounts of the various pigment fractions were not related to photoprotection, but that the important factor may be the total amount of pigment per cell.  相似文献   

14.
Since 1979, when prenylation has been first discovered as chemical oddity of a yeast mating factor, the two forms of this posttranslational modification of proteins (farnesylation and geranylgeranylation) have been found as wide spread among proteins from Eukarya and their viruses. This review attempts to summarize as comprehensively as possible the enzymological processes of prenylation and the various aspects of their biological significance. The substrate proteins of prenyltransferases are known to carry a sequence signal composed of a cysteine-containing 4–5 residue stretch at the utmost C-terminal end that is N-terminally preceded by a flexible and polar linker region of ca. 10 residues. Postprenylation processing of substrate proteins can involve C-terminal proteolysis, C-terminal carboxyl methylation, and other steps of maturation. The prenyl anchor functions as module for membrane attachment or for protein–protein interaction.  相似文献   

15.
Colour is an organoleptic characteristic of virgin olive oil and an important attribute that affects the consumer perception of quality. Chlorophylls and carotenoids are the main pigments responsible for the colour of virgin olive oil. A simple analytical method for the quantitative determination of chlorophylls and carotenoids in virgin olive oils has been developed. The pigments were isolated from small samples of oil (1.0 g) by solid-phase extraction using diol-phase cartridges (diol-SPE), and the extract was analysed by reverse-phase HPLC with diode-array UV detection. Chromatographic peak resolution, reproducibility (coefficient of variation (C.V.) <4.5%) and recovery (>98.4%) for each component were satisfactory. A comparative study of the proposed method was performed versus classical liquid-liquid extraction (LLE) with N,N′-dimethylformamide and solid-phase extraction using a C18 column (C18-SPE). While 96.4% of the pigments were recovered by LLE, only 51.3% were isolated by C18-SPE in comparison to diol-SPE. Likewise, a higher alteration of pigment composition was observed when such LLE and C18-SPE procedures were used. In this sense, a higher ratio of pheophytin in comparison to that isolated by the diol-SPE procedure was achieved with both extraction procedures, indicating a greater extent of the pheophytinization reaction. Therefore, quantification of pigments from virgin olive oil by diol-SPE followed by RP-HPLC was found to be rapid, simple, required only a small amount of sample, consumed only small amounts of organic solvents, and provided high recoveries, accuracy and precision.  相似文献   

16.
Energy transport mechanisms in R-Phycoerythrin (RPE), a light harvesting protein located at the top of the phycobilisome antenna in red algae, are investigated using nonlinear optical spectroscopies and theoretical models. The RPE hexamer possesses a total of 30 bilin pigments, which can be subdivided into three classes based on their molecular structures and electronic resonance frequencies. Of particular interest to this study is the influence of exciton delocalization on the real-space paths traversed by photoexcitations as they concentrate on the lowest energy pigment sites. Transient grating measurements show that significant nuclear relaxation occurs at delay times less than 100 fs, whereas energy transport spans a wide range of time scales depending on the proximity of the initial and final states involved in the process. The fastest energy transport dynamics within the RPE complex are close to 1 ps; however, evidence for sub-100 fs exciton self-trapping is also obtained. In addition, photon echo experiments reveal vibronic interactions with overdamped and underdamped nuclear modes. To establish signatures of exciton delocalization, energy transport is simulated using both modified Redfield and Fo?rster theories, which respectively employ delocalized and localized basis states. We conclude that exciton delocalization occurs between six pairs of phycoerythrobilin pigments (i.e., dimers) within the protein hexamer. It is interesting that these dimers are bound in locations analogous to the well-studied phycocyanobilin dimers of cyanobacterial allophycocyanin and c-phycocyanin in which wave function delocalization is also known to take hold. Strong conclusions regarding the electronic structures of the remaining pigments cannot be drawn based on the present experiments and simulations due to overlapping resonances and broad spectroscopic line widths, which prevent the resolution of dynamics at particular pigment sites.  相似文献   

17.
The similar electrophoretic mobilities and sizes of several of the phycobiliproteins, which are derived from the photosynthetic apparatus of cyanobacteria and eukaryotic algae, render their separation and quantitation a challenging problem. However, we have developed a suitable capillary electrophoresis (CE) method that employs a phytic acid-boric acid buffer and laser-induced fluorescence (LIF) detection with a single 594 nm He-Ne laser. This method takes advantage of the remarkably high quantum yields of these naturally fluorescent proteins, which can be attributed to their linear tetrapyrrole chromophores covalently bound to cysteinyl residues. As such, limits of detection of 1.18 x 10(-14), 5.26 x 10(-15), and 2.38 x 10(-15) mol/l were obtained for R-phycoerythrin, C-phycocyanin, and allophycocyanin proteins, respectively, with a linear dynamic range of eight orders of magnitude in each case. Unlike previously published CE-LIF methods, this work describes the separation of all three major classes of phycobiliproteins in under 5 min. Very good recoveries, ranging from 93.2 to 105.5%, were obtained for a standard mixture of the phycobiliproteins, based on seven-point calibration curves for both peak height and peak area. It is believed that this development will prove useful for the determination of phycobiliprotein content in naturally occurring cyanobacteria populations, thus providing a useful tool for understanding biological and chemical oceanographic processes.  相似文献   

18.
In this paper, we review the literature and present some new data to examine the occurrence and photophysics of the diverse hypericin-like chromophores in heterotrichs, the photoresponses of the cells, the various roles of the pigments and the taxa that might be studied to advance our understanding of these pigments. Hypericin-like chromophores are known chemically and spectrally so far only from the stentorids and Fabrea, the latter now seen to be sister to stentorids in the phylogenetic tree. For three hypericin-like pigments, the structures are known but these probably do not account for all the colors seen in stentorids. At least eight physiological groups of Stentor exist depending on pigment color and presence/absence of zoochlorellae, and some species can be bleached, leading to many opportunities for comparison of pigment chemistry and cell behavior. Several different responses to light are exhibited among heterotrichs, sometimes by the same cell; in particular, cells with algal symbionts are photophilic in contrast to the well-studied sciaphilous (shade-loving) species. Hypericin-like pigments are involved in some well-known photophobic reactions but other pigments (rhodopsin and flavins) are also involved in photoresponses in heterotrichs and other protists. The best characterized role of hypericin-like pigments in heterotrichs is in photoresponses and they have at least twice evolved a role as photoreceptors. However, hypericin and hypericin-like pigments in diverse organisms more commonly serve as predator defense and the pigments are multifunctional in heterotrichs. A direct role for the pigments in UV protection is possible but evidence is equivocal. New observations are presented on a folliculinid from deep water, including physical characterization of its hypericin-like pigment and its phylogenetic position based on SSU rRNA sequences. The photophysics of hypericin and hypericin-like pigments is reviewed. Particular attention is given to how their excited-state properties are modified by the environment. Dramatic changes in excited-state behavior are observed as hypericin is moved from the homogeneous environment of organic solvents to the much more structured surroundings provided by the complexes it forms with proteins. Among these complexes, it is useful to consider the differences between environments where hypericin is not found naturally and those where it is, notably, for example, in heterotrichs. It is clear that interaction with a protein modifies the photophysics of hypericin and understanding the molecular basis of this interaction is one of the outstanding problems in elucidating the function of hypericin and hypericin-like chromophores.  相似文献   

19.
Photosystem II (PSII) complexes from cyanobacteria and plants perform water splitting and plastoquinone reduction and yet have a different complement of lumenal extrinsic proteins. Whereas PSII from all organisms has the PsbO extrinsic protein, crystal structures of PSII from cyanobacteria have PsbV and PsbU while green algae and higher plants instead contain the extrinsic PsbP and PsbQ subunits. Proteomic studies in Synechocystis sp. PCC 6803 identified three further extrinsic proteins in the thylakoid lumen that are associated with cyanobacterial PSII and these are predicted to attach to the thylakoid membrane via a lipidated N-terminus. These proteins are cyanobacterial homologues to the PsbP and PsbQ subunits as well as to Psb27, an additional extrinsic protein associated with "inactive" photosystems that lack the other extrinsic polypeptides. The PsbQ homologue is not present in Prochlorococcus species but otherwise these proteins have been identified in most cyanobacteria although our phylogenetic analyses identified some strains that lack an apparent motif for lipidation in one or other of these subunits. Over the past decade the physiological function of these additional lipoproteins has been investigated in several cyanobacterial strains and recently the structures for each have been solved. This review will evaluate the physiological and structural results obtained for these lipid-attached extrinsic proteins and in silico protein docking of these proteins to PSII centers will be presented.  相似文献   

20.
Summary. Since 1979, when prenylation has been first discovered as chemical oddity of a yeast mating factor, the two forms of this posttranslational modification of proteins (farnesylation and geranylgeranylation) have been found as wide spread among proteins from Eukarya and their viruses. This review attempts to summarize as comprehensively as possible the enzymological processes of prenylation and the various aspects of their biological significance. The substrate proteins of prenyltransferases are known to carry a sequence signal composed of a cysteine-containing 4–5 residue stretch at the utmost C-terminal end that is N-terminally preceded by a flexible and polar linker region of ca. 10 residues. Postprenylation processing of substrate proteins can involve C-terminal proteolysis, C-terminal carboxyl methylation, and other steps of maturation. The prenyl anchor functions as module for membrane attachment or for protein–protein interaction. Prenyl anchor carrying proteins fulfill a large array of functions in signaling and regulation of cellular processes. Therefore, they are involved in the pathogenesis of a variety of human diseases, the most prominent one being cancer. Farnesyltransferase inhibitors show surprisingly high efficiency in controlling tumor growth in model systems but, so far, clinical trials with human patients have remained without the desired success. Interference into prenylation pathways appears also a promising treatment principle in a variety of parasitic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号