首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface ablation of cobalt-cemented tungsten carbide hard metal has been carried out in this work using a 308 nm, 20 ns XeCl excimer laser. Surface microphotography and XRD, as well as an electron probe have been used to investigate the transformation of phase and microstructure as a function of the pulse-number of laser shots at a laser fluence of 2.5 J/cm2. The experimental results show that the microstructure of cemented tungsten carbide is transformed from the original polygonal grains of size 3 μm to interlaced large, long grains with an increase in the number of laser shots up to 300, and finally to gross grains of size 10 μm with clear grain boundaries after 700 shots of laser irradiation. The crystalline structure of the irradiated area is partly transformed from the original WC to βWC1-x, then to αW2C and CW3, and finally to W crystal. It is suggested that the undulating ‘hill–valley’ morphology may be the result of selective removal of cobalt binder from the surface layer of the hard metal. The formation of non-stoichiometric tungsten carbide may result from the escape of elemental carbon due to accumulated heating of the surface by pulsed laser irradiation. Received: 13 July 2000 / Accepted: 27 October 2000 / Published online: 10 January 2001  相似文献   

2.
Cold atomic beam from a rubidium funnel   总被引:1,自引:0,他引:1  
We report an experimental demonstration of a continuous, slow and cold beam of rubidium atoms from a two-dimensional magneto-optic trap or atomic funnel. Typically 7.3(7)×108 atoms/s are ejected from the funnel with a variable velocity in the range 2–8 m/s and a temperature of 45–55 μK in the moving frame. This represents the first demonstration of sub-Doppler laser cooling in an atomic beam and temperatures as low as ≈25 μK have been observed. Received: 30 September 1999 / Published online: 5 April 2000  相似文献   

3.
The formation and development of the large-scale periodic structures on a single crystal Si surface are studied upon its evaporation by pulsed radiation of a copper vapor laser (wavelength of 510.6 nm, pulse duration of 20 ns). The development of structures occurs at a high number of laser shots (∼104) at laser fluence of 1–2 J/cm2 below optical breakdown in a wide pressure range of surrounding atmosphere from 1 to 105 Pa. The structures are cones with angles of 25, which grow towards the laser beam and protrude above the initial surface for 20–30 μm. It is suggested that the spatial period of the structures (10–20 μm) is determined by the capillary waves period on the molten surface. The X-ray diffractometry reveals that the modified area of the Si substrate has a polycrystalline structure and consists of Si nanoparticles with a size of 40–70 nm, depending on the pressure of surrounding gas. Similar structures are also observed on Ge and Ti. Received: 12 February 2000 / Accepted: 28 March 2000 / Published online: 20 June 2001  相似文献   

4.
A diode-laser-array end-pumped efficient CW Nd:GdVO4 laser at 1.06 μm has been developed. A low-order-mode output power of 14.3 W was obtained at the maximum available pump power of 26 W, giving an optical conversion efficiency of 55% and an average slope efficiency of 62%. The laser output beam quality factor at full pump power was determined to be M2<1.8. It is also shown that only lightly doped Nd:GdVO4 crystals are suitable for high-power end-pumped lasers. Received: 4 May 1999 / Published online: 29 July 1999  相似文献   

5.
An electric cage-laser micro-turning lathe was realised and applied to contact-free handling and mechanical processing of micro particles. Since particles with diameters of several micrometers cannot be fixed in mechanical chucks, an octode field cage was used to trap and rotate a single particle in a fluid without any mechanical surface contact. A pulsed nitrogen laser of high beam quality focused to about 1 μm in diameter could be adjusted independently of the cage position. The trapping forces (negative dielectrophoresis) acting on a bead of 5 to 15 μm are up to several hundred pN. This and the surrounding fluid damp down the effect of the laser pulses during bead processing. Examples demonstrating the possibilities of this technique are shown. Microsystems with high optical quality were fabricated photolithographically or by laser direct-write chemical vapor deposition (LCVD). Technical and biotechnological applications are discussed. Received: 20 October 1999 / Accepted: 27 October 1999 / Published online: 10 November 1999  相似文献   

6.
The operation of a continuous-wave mode-locked silver gallium selenide (AgGaSe2) optical parametric oscillator (OPO) is reported. The OPO was synchronously excited by 120-fs-long pulses of 1.55-μm radiation at a repetition rate of 82 MHz. The 1.55-μm radiation is generated by a noncritically phasematched cesium-titanyl-arsenate (CTA)-OPO pumped by a mode-locked Ti:sapphire laser. The AgGaSe2-OPO generates signal and idler radiation in the range from 1.93 μm to 2.49 μm and from 4.1 μm to 7.9 μm, respectively. Up to 67 mW of signal wave output power has been obtained. The experimentally determined pulse duration and chirp parameters are in reasonable agreement with results from a numerical model taking into account group velocity mismatch, group velocity dispersion, self phase modulation, and chirp enhancement. Received: 6 August 1999 / Revised version: 4 October 1999 / Published online: 3 November 1999  相似文献   

7.
The influence of an external field on photorefractive recording in Sn2P2S6 (SPS) crystals is studied. A large gain factor of more then 15 cm-1 is achieved for a grating spacing of 12 μm at λ=0.9 μm. For an applied field exceeding ±200 V/cm a switching of the beam coupling direction is detected, exhibiting a pronounced hysteresis. Received: 25 October 2000 / Revised version: 18 January 2001 / Published online: 21 March 2001  相似文献   

8.
After aging at room temperature for several months W/C multilayers (20 periods, single layer thicknesses in the nanometer range) grown on Si-(111) substrates by pulsed laser deposition (PLD) developed homogeneously wrinkled surfaces. Their structures were studied by optical microscopy, atomic force microscopy and X-ray diffractometry. Typical dimensions of debonded areas are some 100 μm in length, about 40 μm in width and 2–3 μm in height. The formation of wrinkles is accompanied by an increase in the free surface by 1–2%. Stress relaxation is considered the driving force of this phenomenon. Received: 26 July 1999 / Accepted: 29 July 1999 / Published online: 16 September 1999  相似文献   

9.
Efficiency studies of laser driven thin metal disks acceleration using the first harmonic (λ1=1.315 μm) of the Prague Asterix Laser System (PALS) and subsequent craters creation produced by collisions of these disks with massive targets are presented. Several different disks made of aluminium and copper foils with diameters of 300 μm and 600 μm and thicknesses of 11 μm (Al) and 3.6 μ m (Cu) were employed. Disks were placed at the distance of either 100 μ m or 300 μm in front of aluminium massive targets. The following irradiation conditions were used: the laser beam energy of 120 J, the focal spot diameter of 200 μm, and the pulse duration of 0.4 ns (FWHM). A three-frame interferometric system was employed to determine electron density distributions in plasma corona. Shape and volume of craters were obtained by crater replica technology and microscopy measurements. The aim of these investigations was to analyse conditions leading to the most effective energy transfer in the process of collision of the accelerated disks with solid targets. The overall efficiency of these processes was characterized by the volume of craters produced in such targets.  相似文献   

10.
CO2 laser-induced plasma CVD synthesis of diamond   总被引:1,自引:0,他引:1  
2 laser maintenance of a stationary optical discharge in a gas stream, exhausting over a substrate into the air (laser plasmatron). Nano- and polycrystalline-diamond films were deposited on tungsten substrates from atmospheric-pressure Xe(Ar):H2:CH4 gas mixtures at flow rates of 2 ?/min. A 2.5-kW CO2 laser focused beam produced plasma. The deposition area was about 1 cm2 and growth rates were up to 30–50 μm/h. Peculiarities and advantages of laser plasmatrons are discussed. Received: 15 January 1998/Accepted: 16 January 1998  相似文献   

11.
Broadly tunable difference-frequency generation (DFG) in AgGaS2 was achieved by mixing dual-wavelength oscillating pulses from an electronically tuned Ti:sapphire laser with a two-frequency-driven acousto-optic device. Continuous tuning from 6.5 to 8.5 μm was achieved by simultaneous dual-wavelength-tuned DFG without crystal rotation. In the dual-pulse oscillation, the shorter and longer wavelength pulses were tuned from 700 to 775 nm and from 763 to 880 nm, respectively, while keeping the phase-matching relationship for DFG. When crystal rotation was adopted, however, the tunable output range was extended from 5.3 to 12 μm by tuning the longer wavelength pump pulse, while the shorter wavelength pulse was fixed. Received: 18 November 1998 / Revised version: 5 February 1999 / Published online: 26 May 1999  相似文献   

12.
The Er:YAG and the CO2 laser are competitors in the field of hard tissue ablation. The use of Er:YAG lasers (2.94 μm, pulse length L of 100 to 200 μs) show smaller areas of thermal defects then ‘‘superpulsed’’ CO2 lasers with pulse lengths of approximately 100 μs. Only the development of a Q-switched CO2 laser (9.6 μm, τL=250 ns) allowed for similar results. In this paper new results for the Er:YAG and the Q-switched CO2 laser under the influence of water spray will be presented. Several parameters are of special interest for these investigations: the specific ablation energy, which shows a minimum for the CO2 laser at an energy density of 9 J/cm 2 and a broad shallow minimum in the range of 10 to 70 J/cm2 for the Er:YAG laser, and comparison of the cut-shape and depth. Surface effects and cutting velocity are discussed based on SEM pictures. Received: 19 July 2000 / Revised version: 1 November 2000 / Published online: 30 November 2000  相似文献   

13.
We report difference-frequency generation (DFG) in periodically poled lithium niobate (PPLN) around 4.25 μm using a cw Nd:YAG and an injection-locked diode laser. This system provides a narrow linewidth source at 4.25 μm with near-shot-noise-limited operation. A conversion efficiency close to the theoretical limit is obtained. Detection of CO2 absorption spectra is demonstrated and further improvements and applications to high sensitivity spectroscopy are discussed. Received: 12 August 1999 / Revised version: 21 January 2000 / Published online: 24 March 2000  相似文献   

14.
Micro-lenses with well-defined optical parameters are generated on polymethylmethacrylate (PMMA) substrates doped with diphenyltriazene (DPT) by controlled use of a swelling effect generated under conditions of subablative excimer laser illumination. The surface profiles depend on the laser spot size and energy density. A sensitively balanced combination of matrix softening, substrate volume expansion due to photochemical nitrogen release, and surface tension is responsible for the final shape of the lenses. Complete arrays of identical lenses with 15 μm diameters and a focal length of 30 μm are produced by irradiation of (0.25 wt. %) DPT-PMMA with a single laser pulse at a wavelength of 308 nm and a fluence of 3 J/cm2. It is shown experimentally and theoretically that appropriate volume expansion is possible without introducing internal light scattering due to the formation of small bubbles. Received: 7 April 1999 / Accepted: 8 April 1999 / Published online: 5 May 1999  相似文献   

15.
Time-resolved dependence of the transient current through a ns laser pulse illuminated scanning tunneling microscope (STM) tip/sample gap in tunneling mode and out of tunneling range is presented. A self-designed fast STM-preamplifier (bandwidth 35 MHz) allows one to resolve the fine structure of the transient signal as well as the observation of some effects that are undetectable by using conventional low-band preamplifiers. The dependence of the threshold laser pulse intensity, which corresponds to the beginning of electron emission from tip (in non-tunneling mode), as a function of the tip/sample distance was investigated. At tip/sample distances from tunnel contact up to approximately 1 μm a linear dependence is found. This behavior is in good agreement with the theory for field enhancement in a STM tip/sample system. In tunneling mode a ns (fast component) as well as a μs (slow component) current response was found as a result of the laser pulse illumination. These data suggest the tip bending to be an important factor in clarifying the thermal/mechanical mechanism of laser-assisted surface nanomodification. Received: 4 May 1998 / Accepted: 29 January 1999 / Published online: 28 April 1999  相似文献   

16.
~~A Raman laser system for multi-wavelength satellite laser ranging@K.Hamal$Czech Technical University in Prague,Czech @I.Prochazka$Czech Technical University in Prague,Czech @J.Blazej$Czech Technical University in Prague,Czech1. Yang Fumin, Chen Wanzhen, Zhang Zhongping et al., Satellite laser ranging experiment with sub-centimeter single-shot ranging precision at Shanghai Observatory, Science in China, Ser. A, 2002, 32(10): 935-939. 2. Degnan, J. J., Millimeter accurac…  相似文献   

17.
The paper reports on an experimental investigation and numerical analysis of noncritically and critically phasematched LiB3O5 (LBO) optical parametric oscillators (OPOs) synchronously pumped by the third harmonic of a cw diode-pumped mode-locked Nd:YVO4 oscillator–amplifier system. The laser system generates 9.0 W of 355-nm mode-locked radiation with a pulse duration of 7.5 ps and a repetition rate of 84 MHz. The LBO OPO, synchronously pumped by the 355-nm pulses, generates a signal wave tunable in the blue spectral range 457–479 nm. With a power of up to 5.0 W at 462 nm and 1.7 W at 1535 nm the conversion efficiency is 74%. The OPO is characterized experimentally by measuring the output power (and its dependence on the pump power, the transmission of the output coupler and the resonator length) and the pulse properties (such as pulse duration and spectral width). Also the beam quality of the resonant and nonresonant waves is investigated. The measured results are compared with the predictions of a numerical analysis for Gaussian laser and OPO beams. In addition to the blue-signal output visible-red 629-nm radiation is generated by sum-frequency mixing of the 1.535-μm infrared idler wave with the residual 1.064-μm laser radiation. A power of 1.25 W of 1.535-μm idler radiation and 5.7 W of 1.064-μm laser light generated a red 629-nm output power of 2.25 W. Received: 2 February 2000 / Revised version: 28 July 2000 / Published online: 22 November 2000  相似文献   

18.
The excitation mechanism of rare-earth ions in silicon nanocrystals   总被引:2,自引:0,他引:2  
A detailed investigation on the excitation mechanisms of rare-earth (RE) ions introduced in Si nanocrystals (nc) is reported. Silicon nanocrystals were produced by high-dose 80-keV Si implantation in thermally grown SiO2 followed by 1100 °C annealing for 1 h. Subsequently some of the samples were implanted by 300-keV Er, Yb, Nd, or Tm at doses in the range 2×1012–3×1015 /cm2. The energy was chosen in such a way to locate the RE ions at the same depth where nanocrystals are. Finally an annealing at 900 °C for 5 min was performed in order to eliminate the implantation damage. These samples show intense room-temperature luminescence due to internal 4f shell transitions within the RE ions. For instance, luminescence at 1.54 μm and 0.98 μm is observed in Er-doped nc, at 0.98 μm in Yb-doped nc, at 0.92 μm in nc and two lines at 0.78 μm and 1.65 μm in Tm-doped nc. Furthermore, these signals are much more intense than those observed when RE ions are introduced in pure SiO2 in the absence of nanocrystals, demonstrating the important role of nanocrystals in efficiently exciting the REs. It is shown that the intense nc-related luminescence at around 0.85 μm decreases with increasing RE concentration and the energy is preferentially transferred from excitons in the nc to the RE ions which, subsequently, emit radiatively. The exact mechanism of energy transfer has been studied in detail by excitation spectroscopy measurements and time-resolved photoluminescence. On the basis of the obtained results a plausible phenomenological model for the energy transfer mechanism emerges. The pumping laser generates excitons within the Si nanocrystals. Excitons confined in the nc can either give their energy to an intrinsic luminescent center emitting at around 0.85 μm nor pass this energy to the RE 4f shell, thus exciting the ion. The shape of the luminescence spectra suggests that excited rare-earth ions are not incorporated within the nanocrystals and the energy is transferred at a distance while they are embedded within SiO2. Rare-earth excitation can quantitatively be described by an effective cross section σeff taking into account all the intermediate steps leading to excitation. We have directly measured σeff for Er in Si nc obtaining a value of ≈2×10−17 cm2. This value is much higher than the cross section for excitation through direct photon absorption (8×10−21 cm2) demonstrating that this process is extremely efficient. Furthermore, the non-radiative decay processes typically limiting rare-earth luminescence in Si (namely back-transfer and Auger) are demonstrated to be absent in Si nc further improving the overall efficiency of the process. These data are reported and their implications. Received: 9 April 1999 / Accepted: 10 April 1999 / Published online: 2 June 1999  相似文献   

19.
A 50 cm silver coated hollow fiber with inner diameter of 250 μm and filled with argon has been used to compress optical pulses from a Ti:sapphire laser at 800 nm. Input pulses with energy of 250 μJ and duration of 110 fs were used and compressed pulses with energy of 220 μJ and duration of 20 fs were generated by using a prism compressor. Numerical and experimental results are compared. There is good agreement between the measured beam diameters of the hollow-fiber output pulse and the calculated values obtained from propagation of the HE11 mode into free space. For comparison, a similar uncoated fused-silica hollow fiber was also used to obtain 20 fs compressed pulses with an energy of 190 μJ. Received: 7 September 2002 / Published online: 26 March 2003 RID="*" ID="*"Corresponding author. Fax: +1-780/492-1811, E-mail: mohebbi@ee.ualberta.ca  相似文献   

20.
We demonstrate that Yb-doped Ca4GdO(BO3)3 (GdCOB) crystals are suitable for the development of high-power diode-pumped lasers emitting at around 1.04 μm. A 15%-doped Yb:GdCOB crystal was longitudinally pumped with a cw fiber-coupled diode emitting 10 W at 976 nm. While 5.2 W of diode power was absorbed, we obtained 3.2 W of 1043-μm laser light, with a beam quality factor M2 equal to 3, and 2.5 W in a diffraction-limited beam. Furthermore, the laser is continuously tunable between 1018 and 1086 nm. Thermal effects have been investigated with a Shack–Hartmann wavefront analyser: although thermal lensing is not negligible, it does not affect the performance of the laser with the resonator design we used. Received: 1 August 2000 / Revised version: 18 September 2000 / Published online: 21 February 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号