首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fundamental part of a computational system is its memory, which is used to store and retrieve data. Classical computer memories rely on the static approach and are very different from human memories. Neural network memories are based on auto-associative attractor dynamics and thus provide a high level of pattern completion. However, they are not used in general computation since there are practically no algorithms to load an arbitrary landscape of attractors into them. In this sense neural network memory models cannot communicate well with symbolic and prior knowledge.We propose the design of a new memory based on localist attractor dynamics with reconsolidation called Reconsolidation Attractor Network (RAN). RAN combines symbolic and subsymbolic features in a very attractive way: it is based on attractors; enables pattern classification under missing data; and demonstrates dynamic reconsolidation, which is very useful for tracking changing concepts. The perception RAN enables is somewhat reminiscent of human perception due to its context sensitivity. Furthermore, it enables an immediate and clear interface with symbolic memories, including loading of attractors by means of trivial wiring, updating attractors, and retrieving them faster without waiting for full convergence. It also scales to any number of concepts. This provides a useful counterpoint to more conventional memory systems, such as random access memory and auto-associative neural networks.  相似文献   

2.
In the neural network theory content-addressable memories are defined by patterns that are attractors of the dynamical rule of the system. This paper develops a quantum neural network starting from a classical neural network Hamiltonian and using a Schrödinger-like equation. It then shows that such a system exhibits probabilistic memory storage characteristics analogous to those of the dynamical attractors of classical systems.  相似文献   

3.
Associative memory dynamics in neural networks are generally based on attractors. Retrieval based on fixed-point attractors works if only one memory pattern is retrieved at the time, but cannot enable the simultaneous retrieval of more than one pattern. Stable phase-locking of periodic oscillations or limit cycle attractors leads to incorrect feature bindings if the simultaneously retrieved patterns share some of their features. We investigate retrieval dynamics of multiple active patterns in a network of chaotic model neurons. Several memory patterns are kept simultaneously active and separated from each other by a dynamic itinerant synchronization between neurons. Neurons representing shared features alternate their synchronization between patterns, thus multiplexing their binding relationships. Our model includes a mechanism for self-organized readout or decoding of memory pattern coherence in terms of short-term potentiation and short-term depression of synaptic weights.  相似文献   

4.
We present analytical and numerical study of high-order parametric resonance in a driven magneto-optical trap of cold atoms. We have obtained the general solutions for parametric resonance of arbitrary order. In particular, the amplitude and phase of atomic limit-cycle motion is expressed as a function of the modulation amplitude and frequency. Moreover, the atomic dynamics for high-order parametric resonance is investigated in terms of the Hamiltonian approach, which is useful in studying transitions between attractors. We find that the analytical results are in good agreement with the numerical calculations.  相似文献   

5.
Resonance can occur in bistable dynamical systems due to the interplay between noise and delay (τ) in the absence of a periodic input. We investigate resonance in a two-neuron model with mutual time-delayed inhibitory feedback. For appropriate choices of the parameters and inputs three fixed-point attractors co-exist: two are stable and one is unstable. In the absence of noise, delay-induced transient oscillations (referred to herein as DITOs) arise whenever the initial function is tuned sufficiently close to the unstable fixed-point. In the presence of noisy perturbations, DITOs arise spontaneously. Since the correlation time for the stationary dynamics is ~τ, we approximated a higher order Markov process by a three-state Markov chain model by rescaling time as t?→?2sτ, identifying the states based on whether the sub-intervals were completely confined to one basin of attraction (the two stable attractors) or straddled the separatrix, and then determining the transition probability matrix empirically. The resultant Markov chain model captured the switching behaviors including the statistical properties of the DITOs. Our observations indicate that time-delayed and noisy bistable dynamical systems are prone to generate DITOs as switches between the two attractors occur. Bistable systems arise transiently in situations when one attractor is gradually replaced by another. This may explain, for example, why seizures in certain epileptic syndromes tend to occur as sleep stages change.  相似文献   

6.
Fixed-point attractors with global stability manifest themselves in a number of gene regulatory networks. This property indicates the stability of regulatory networks against small state perturbations and is closely related to other complex dynamics. In this paper, we aim to reveal the core modules in regulatory networks that determine their global attractors and the relationship between these core modules and other motifs. This work has been done via three steps. Firstly, inspired by the signal transmission in the regulation process, we extract the model of chain-like network from regulation networks. We propose a module of “ideal transmission chain(ITC)”, which is proved sufficient and necessary(under certain condition) to form a global fixed-point in the context of chain-like network. Secondly, by examining two well-studied regulatory networks(i.e., the cell-cycle regulatory networks of Budding yeast and Fission yeast), we identify the ideal modules in true regulation networks and demonstrate that the modules have a superior contribution to network stability(quantified by the relative size of the biggest attraction basin). Thirdly, in these two regulation networks, we find that the double negative feedback loops, which are the key motifs of forming bistability in regulation, are connected to these core modules with high network stability. These results have shed new light on the connection between the topological feature and the dynamic property of regulatory networks.  相似文献   

7.
One-dimensional maps have proved to be useful models for understanding the transition to turbulence. We investigate a smooth perturbation of the well-known logistic system in order to examine numerically the change in the bifurcation behavior which is observed, when the Schwarzian derivative is allowed to become positive. We find coexistence of a fixed point attractor and a periodic or chaotic two-band-attractor. The chaotic two-band attractor can disappear by yielding a preturbulent state which will asymptotically settle down to a fixed-point. The chaotic behavior of some systems can be destroyed by arbitrarily small amounts of external noise. The concept of (ε, δ)-diffusions is used to describe the sensitivity of attractors against external noise. We also observe a direct transition from a fixed-point to a chaotic one-band attractor. This can be interpreted as type-III-intermittency of Pomeau and Manneville but with an almost linear scaling behavior of the Lyapunov exponent.  相似文献   

8.
《Physica A》2007,379(1):334-356
In this paper, we explore both numerically and analytically the robustness of a synchronous Boolean network governed by rule 126 of cellular automata. In particular, we explore whether or not the introduction of noise into the system has any discernable effect on the evolution of the system. This noise is introduced by changing the states of a given number of nodes in the system according to certain rules. New mathematical models are developed for this purpose. We use MATLAB to run the numerical simulations including iterations of the real system and the model, computation of Lyapunov exponents (LyE), and generation of bifurcation diagrams. We provide a more in-depth fixed-point analysis through analytic computations paired with a focus on bifurcations and delay plots to identify the possible attractors. We show that it is possible either to attenuate or to suppress entirely chaos through the introduction of noise and that the perturbed system may exhibit very different long-term behavior than that of the unperturbed system.  相似文献   

9.
We show that the mean number of attractors in a critical Boolean network under asynchronous stochastic update grows like a power law and that the mean size of the attractors increases as a stretched exponential with the system size. This is in strong contrast to the synchronous case, where the number of attractors grows faster than any power law.  相似文献   

10.
Based on the behavior of living beings, which react mostly to external stimuli, we introduce a neural-network model that uses external patterns as a fundamental tool for the process of recognition. In this proposal, external stimuli appear as an additional field, and basins of attraction, representing memories, arise in accordance with this new field. This is in contrast to the more-common attractor neural networks, where memories are attractors inside well-defined basins of attraction. We show that this procedure considerably increases the storage capabilities of the neural network; this property is illustrated by the standard Hopfield model, which reveals that the recognition capacity of our model may be enlarged, typically, by a factor 102. The primary challenge here consists in calibrating the influence of the external stimulus, in order to attenuate the noise generated by memories that are not correlated with the external pattern. The system is analyzed primarily through numerical simulations. However, since there is the possibility of performing analytical calculations for the Hopfield model, the agreement between these two approaches can be tested—matching results are indicated in some cases. We also show that the present proposal exhibits a crucial attribute of living beings, which concerns their ability to react promptly to changes in the external environment. Additionally, we illustrate that this new approach may significantly enlarge the recognition capacity of neural networks in various situations; with correlated and non-correlated memories, as well as diluted, symmetric, or asymmetric interactions (synapses). This demonstrates that it can be implemented easily on a wide diversity of models.  相似文献   

11.
Xiang Li   《Physica A》2006,360(2):629-636
We investigate collective synchronous behaviors in random complex networks of limit-cycle oscillators with the non-identical asymmetric coupling scheme, and find a uniform coupling criticality of collective synchronization which is independent of complexity of network topologies. Numerical simulations on categories of random complex networks have verified this conclusion.  相似文献   

12.
Amit Sharma 《Physics letters. A》2019,383(17):2051-2055
We report the emergence of an explosive synchronization transition in the identical oscillators interacting indirectly through a network of dynamical agents. The transition from incoherent state to coherent state and vice–versa in these coupled oscillator exhibits an abrupt as well as irreversible. Such transition depends on the network topology as well as the interaction between the oscillators and dynamical agents rather than degree-frequency correlation in the network of oscillators. The occurrence of explosive synchronization is studied in details by using an appropriate order parameter for limit-cycle oscillators with respect to the different parameters like rewiring probability, average degree, and diffusion rate in dynamical agents.  相似文献   

13.
《Physics letters. A》2019,383(17):2056-2060
The collective dynamics of a network of nonlinear oscillators can be represented in terms of activity level of the network. We have studied a universal transition from activity to inactivity in a globally coupled network of identical oscillators. We consider mixed coupling, where some of the network elements interact through the similar variables while others with dissimilar variables. The coupling strength at which the network become inactive is inversely proportional to the fraction of oscillators coupled through dissimilar variables. Results are presented for the network of various globally coupled limit-cycle oscillators such as Stuart-Landau oscillators, MacArthur prey-predator model as well as for the chaotic Rössller oscillators. The analytical condition for the onset of inactivity in the system is calculated using linear stability analysis which is found to be in good agreement with the numerical results.  相似文献   

14.
Product-feedback inhibition is a ubiquitous regulatory scheme for maintaining homeostasis in living cells. Individual metabolic pathways with product-feedback inhibition are stable as long as one pathway step is rate limiting. However, pathways are often coupled both by the use of a common substrate and by stoichiometric utilization of their products for cell growth. We show that such a coupled network with product-feedback inhibition may exhibit limit-cycle oscillations which arise via a Hopf bifurcation. Our results highlight novel evolutionary constraints on the architecture of metabolism.  相似文献   

15.
Common experience suggests that attracting invariant sets in nonlinear dynamical systems are generally stable. Contrary to this intuition, we present a dynamical system, a network of pulse-coupled oscillators, in which unstable attractors arise naturally. From random initial conditions, groups of synchronized oscillators (clusters) are formed that send pulses alternately, resulting in a periodic dynamics of the network. Under the influence of arbitrarily weak noise, this synchronization is followed by a desynchronization of clusters, a phenomenon induced by attractors that are unstable. Perpetual synchronization and desynchronization lead to a switching among attractors. This is explained by the geometrical fact, that these unstable attractors are surrounded by basins of attraction of other attractors, whereas the full measure of their own basin is located remote from the attractor. Unstable attractors do not only exist in these systems, but moreover dominate the dynamics for large networks and a wide range of parameters.  相似文献   

16.
We study global stability of synchronization in asymmetrically connected networks of limit-cycle or chaotic oscillators. We extend the connection graph stability method to directed graphs with node balance, the property that all nodes in the network have equal input and output weight sums. We obtain the same upper bound for synchronization in asymmetrically connected networks as in the network with a symmetrized matrix, provided that the condition of node balance is satisfied. In terms of graphs, the symmetrization operation amounts to replacing each directed edge by an undirected edge of half the coupling strength. It should be stressed that without node balance this property in general does not hold.  相似文献   

17.
Sixiao Kong 《中国物理 B》2021,30(11):110502-110502
By introducing a discrete memristor and periodic sinusoidal functions, a two-dimensional map with coexisting chaos and hyperchaos is constructed. Various coexisting chaotic and hyperchaotic attractors under different Lyapunov exponents are firstly found in this discrete map, along with which other regimes of coexistence such as coexisting chaos, quasi-periodic oscillation, and discrete periodic points are also captured. The hyperchaotic attractors can be flexibly controlled to be unipolar or bipolar by newly embedded constants meanwhile the amplitude can also be controlled in combination with those coexisting attractors. Based on the nonlinear auto-regressive model with exogenous inputs (NARX) for neural network, the dynamics of the memristive map is well predicted, which provides a potential passage in artificial intelligence-based applications.  相似文献   

18.
Despite significant research, self-excited thermoacoustic oscillations continue to hinder the development of lean-premixed gas turbines, making the early detection of such oscillations a key priority. We perform output-only system identification of a turbulent lean-premixed combustor near a Hopf bifurcation using the noise-induced dynamics generated by inherent turbulence in the fixed-point regime, prior to the Hopf point itself. We model the pressure fluctuations in the combustor with a van der Pol-type equation and its corresponding Stuart–Landau equation. We extract the drift and diffusion terms of the equivalent Fokker–Planck equation via the transitional probability density function of the pressure amplitude. We then optimize the extracted terms with the adjoint Fokker–Planck equation. Through comparisons with experimental data, we show that this approach can enable prediction of (i) the location of the Hopf point and (ii) the limit-cycle amplitude after the Hopf point. This study shows that output-only system identification can be performed on a turbulent combustor using only pre-bifurcation data, opening up new pathways to the development of early warning indicators of thermoacoustic instability in practical combustion systems.  相似文献   

19.
The Kauffman model describes a particularly simple class of random Boolean networks. Despite the simplicity of the model, it exhibits complex behavior and has been suggested as a model for real world network problems. We introduce a novel approach to analyzing attractors in random Boolean networks, and applying it to Kauffman networks we prove that the average number of attractors grows faster than any power law with system size.  相似文献   

20.
We present and analyze the first example of a dynamical system that naturally exhibits attracting periodic orbits that are unstable. These unstable attractors occur in networks of pulse-coupled oscillators, and become prevalent with increasing network size for a wide range of parameters. They are enclosed by basins of attraction of other attractors but are remote from their own basin volume such that arbitrarily small noise leads to a switching among attractors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号