首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The following bond lengths and bond angles have been deduced from a vapour phase electron diffraction study of (CH3)2NSO2N(CH3)2: r(C-H) 1.114 ± 0.005 Å, r(S-O) 1.432 ± 0.010 Å, r(N-C) 1.475 ± 0.013 Å, r(S-N) 1.651 ± 0.003 Å, ∠N-C-H 109.3 ± 2.0°, ∠C-N-C 118.0 ± 302°, ∠S-N-C 115.2 ± 1.1°, ∠N-S-N 110.5±1.3° and ∠O-S-O 114.7±2.5°. The sulphur bond configuration and the prevailing conformation, which was identical to that in the crystal, are discussed in relation to analogous sulphide and sulphoxide derivatives.  相似文献   

2.
The molecular structure of tetrafluoro-1,3-diselenetane was determined in the gas phase by electron diffraction. A planar ring configuration with the following geometric parameters (rg-values) was obtained:r(Se-C) = 1.968 ± 0.004 Å, r(C-F) = 1.353 ± 0.003 Å, ∠SeCSe = 98.5° ± 0.4°, ∠FCF = 106.3 ± 0.8°. SCF-MO calculations in the CNDO/2 approximation confirm the planarity of the four membered ring and give a plausible explanation for the remarkably short Se-C bond length in the ring which in spite of ring strain is shorter than in Se(CF3)2. There exists a strong bonding interaction between the diagonal selenium atoms which amounts to about one fourth of a normal single bond strength.  相似文献   

3.
The molecular structure of bis(trifluoromethyl)mercury has been determined by electron diffraction of gases. The best agreement between experiment and model was obtained for freely rotating CF3 groups and the following geometric parameters (r°α values): C-F = 1.345(3) Å, Hg-C = 2.101(5) Å and <FCF = 106.8°(0.2). The effect of CH3/CF3 substitution on the Hg-C bond length is discussed.  相似文献   

4.
A gas electron diffraction study yielded the following geometrical parameters for hexamethylcyclotrisilazane: r(Si-N) = 1.728 ± 0.004 Å, r(Si-C) = 1.871 ± 0.004 Å, r(C-H) = 1.124 ± 0.007 Å, ∠N-Si-N = 108.4 ± 1.0°, ∠Si-N-Si = 126.8 ± 0.8°, ∠C-Si-C = 108.9 ± 2.3°, ∠H-C-H = 111.6 ± 0.9°. The (SiN)3 ring was found to be puckered but the deviation from planarity is relatively small. Details of the ring shape could not be determined. The degree of ring puckering in six-membered rings with alternating atoms can be roughly predicted from the bond angles in analogous non-cyclic molecules.  相似文献   

5.
The molecular geometry of the complex of aluminium trichloride with ammonia, Cl3Al.NH3, has been studied by electron diffraction. The most important internuclear distances in terms of ra parameters are as follows: r(Al-Cl) = 2.100±0.005 Å, r(Al-N) = 1.996±0.019 Å, r(Cl·Cl) = 3.569±0.011 Å and r(Cl·N) = 3.165±0.012 Å. The Cl-Al-Cl bond angle in terms of an approximate ra structure is 116.9°. The assumptions of a staggered model in the structure analysis was justified by CNDO/2 calculations. The experimental data indicate strong linkage between the donor and acceptor parts. The flat pyramidal average configuration of the AlCl3 part of the complex suggests planar equilibrium structure for free AlCl3. Variations in the bond configurations of the donor and acceptor parts, as compared with those of the respective free molecules, are discussed.  相似文献   

6.
The molecular structures of C2F5H and C2H5F have been studied using gas-phase electron diffraction data collected on the Balzers KDG2 instrument. The following values for the main independent geometrical parameters were obtained (ra values with e.s.d. in parentheses): in C2F5H, C-C = 1.525(4) Å, C-F(CHF2) = 1.347 Å, C-F(CF3) = 1.327 Å [C-F(av.) = 1.335(2) Å], ∠CCF(av.) = 110.0(2)°; in C2H5F, C-C = 1.502(5) Å, C-F = 1.397(4) Å, C-H = 1.097(2) Å. ∠CCF = 110.4(2)°, ∠CCH(av.) = 113.6(4)°. Evidence is presented to show that the electron diffraction data for C2H5F are not compatible with values for the bond angles deduced spectroscopically.  相似文献   

7.
2-Chloro-3-fluoro-1-propene has been studied by electron diffraction, and the molecule was found to exist in equilibrium between a syn and a gauche conformation, with the syn conformation as the most stable. The most important structure parameters with standard deviation are: rg(CC) = 1.338(6) Å,rg(C—C) = 1.505(5) Å, rg(C—F) = 1.378(4) Å, rg(C-Cl) = 1.743(3) Å, ∠CC—Cl = 123.0(7)°, ∠CC—C = 125.6(6)° and ∠C—C—F = 111.2(8)°.A force field was determined by a least-squares refinement to vibrational frequencies. Mean square amplitudes of vibration and perpendicular amplitude correction coefficients have been calculated. The mean square amplitudes of vibration from the electron diffraction data are in very good agreement with the values calculated from the spectroscopic data.  相似文献   

8.
The microwave spectrum of chloroperoxytrifluoromethane has been recorded from 12.5 to 40.0 GHz. Only a-type transitions were observed. The R-branch assignments have been made for both the CF3OO35C1 and CF3OO37Cl species for the ground vibrational state. The rotational constants are: A=4808± 12, B=1318.55±0.02, C=1278.28±0.02 MHz for the 35CI species, and A=4748±300,B=1285.28±0.96, C=1246.80±0.96 MHz for the 37Cl species. From a diagnostic least-squares adjustment to fit the six rotational constants the following structural parameters were obtained: r(C-0)=1.377±0.03 Å, r(O-O)=1.445± 0.049 Å, r(Cl-O)=1.69±0.04 Å, ∠COO=108.1±4.2°, ∠ClOOC=99.5±2.0°, and ∠tilt = 6.0±0.9° with reasonable assumptions for the three other structural parameters. The relatively large uncertainty in these structural parameters results from the large uncertainty in the A rotational constants. These parameters are compared to the corresponding ones in some other peroxides. The quadrupole coupling constants have been obtained and are discussed.  相似文献   

9.
The electron diffraction study of azetidine yielded the following main geometrical parameters (ra structure): dihedral angle (the angle between the C-C-C and C-N-C planes) φ = 33.1 ± 2.4°, r(C-N) = 1.482 ± 0.006Å, r(C-C) = 1.553 ± 0.009Å, r(C-H) = 1.107 ± 0.003Å, ∠C-N-C = 92.2 ± 0.4°, ∠C-C-C = 86.9 ± 0.4° and ∠C-C-N = 85.8 ± 0.4°.  相似文献   

10.
The structure of Rh2(CH3CO2)4(DMF)2 {DMF = HCON(CH3)2} has been determined by single crystal X-ray methods. The compound crystallizes with eight formula units in a cell of dimensions: a = 29.438(7) Å, b = 7.978(2) Å, c = 20.279(5) Å, β = 113.20(4)°, V = 4377.5 Å3, space group C2/c. The structure has been refined by full-matrix least-squares method to a final R = 0.030 for the 4156 observed data. Two Rh(II) atoms are linked by four acetate groups forming a dimeric unit, where the RhRh distance is 2.383(1) Å. The coordination sphere about each Rh atom is completed by a DMF molecule; the average RhO(DMF) distance is 2.296(3) Å.  相似文献   

11.
The molecular geometry of the complex of gallium trichloride with ammonia, Cl3Ga.NH3, has been studied by electron diffraction. The most important internuclear distances in terms of ra parameters are as follows: r(Ga-Cl) = 2.142±0.005Å, r(Ga-N) = 2.057±0.011Å, r(Cl?Cl) = 3.642±0.010Åand r(Cl?N) = 3.242±0.012Å. As in the case of the aluminium analogue, the flat pyramidal configuration of the GaCl3 part of the complex suggests a planar equilibrium structure for free GaCl3. The distance between the donor and acceptor parts may indicate a somewhat weaker interaction than is the case in the aluminium analogue.  相似文献   

12.
The structure of Pt(PF3)4 was reinvestigated making use of a new theory of intramolecular dynamic scattering. Derived molecular parameters were insensitive to the dynamic corrections. Refinements for this tetrahedral molecule yielded rg(Pt-P) = 2.229(5) Å, rg(P-F) = 1.550(4) Å, and ∠PtPF = 118.9°(0.4), with the indicated uncertainties representing 2.5σ. Amplitudes of vibration were also determined. Diffraction patterns were consistent with freely rotating PF3 groups.  相似文献   

13.
Extended basis set computations on SCF and CEPA level were performed for BH3NH3 and BH3PH3 to determine the complexation energy ΔE and the equilibrium distance r(BX) between the “heavy” atoms. Our CEPA results (SCF in parentheses): ΔE(BH3NH) = ?27(?21.3) kcal/mol, ΔE(BH3PH3) = ?17(?11.8) kcal/mol, r(BN) = 1.65(1.68) Å, r(BP) = 1.95(1.99) Å indicate a marked influence of electron correlation on these properties.  相似文献   

14.
The molecular structure of selenonyl fluoride (SeO2F2) and sulfuryl fluoride (SO2F2) has been studied by gas-phase electron diffraction. The geometries of both molecules are consistent with predictions of VSEPR (valence-shell electron-pair repulsion) theory. The results for the more important distance (ra), bond angle, and r.m.s. amplitude (l) parameters with estimated uncertainties estimated at 2σ are for SeO2F2r(Se = 0) = 1.575 Å (0.002), r(Se-F) = 1.685 Å (0.002), ∠OSeO = 126.2° (0.5), ∠FSeF = 94.1° (0.5), l(Se = 0) = 0.0440 Å (0.0046), l(Se-F) = 0.0472 Å (0.0042), and for SO2F2r(S = 0) = 1.397 Å (0.002), r(S-F) = 1.530 Å (0.002), ∠OSO = 122.6° (1.2), ∠FSF = 96.7° (1.1), l(S = 0) = 0.0331 Å (0.0015), l(S-F) = 0.0393 Å (0.0018).  相似文献   

15.
The structures of tetrachloro-p-benzoquinone and tetrachloro-o-benzoquinone (p- and o-chloranil) have been investigated by gas electron diffraction. The ring distances are slightly larger and the carbonyl bonds slightly smaller than in the corresponding unsubstituted quinones. The molecules are planar to within experimental error, but small deviations from planarity such as those found for the para compound in the crystal are completely compatible with the data. Values for the geometrical parameters (ra distances and bond angles) and for some of the more important amplitudes (l) with parenthesized uncertainties of 2σ including estimated systematic error and correlation effects are as follows. Tetrachloro-p-benzoquinone: D2h symmetry (assumed); r(CO) = 1.216 Å(4), r(CC) = 1.353 Å(6), r(C-C) = 1.492 Å(3), r(C-Cl) = 1.701 Å(3), ∠C-C-C = 117.1° (7), ∠CC-C1 = 122.7° (2), l(CO)= 0.037 Å(5), l(CC) = l(C-C) - 0.008 Å(assumed) = 0.049 Å(7), and l(C-Cl) = 0.054 Å(3). Tetrachloro-o-benzoquinone: C2v symmetry (assumed); r(CO) = 1.205 Å(5), r(CC) = 1.354 Å(9), r(Ccl-Ccl) = 1.478 Å(28), r(Co-Ccl) = 1.483 Å(24), r(Co-Co) = 1.526 Å(2), r(C-Cl)= 1.705 Å(3), <Co-CO = 121.0° (22), ∠C-C-C = 117.2° (9), ∠Cco, ClC-Cl = 118.9° (22), ∠Cccl, ClC-Cl = 122.2°(12), l(CO) = 0.039 Å(5), and l(Ccl-Ccl) = l(Co-Ccl) = l( Co-Co) = l(CC) + 0.060 Å(equalities assumed) = 0.055 Å(9). Vibrational'shortenings (shrinkages) of a few of the long non-bond distances have also been measured.  相似文献   

16.
Hexafluoro-Dewar-benzene has been studied by the electron-diffraction method. A model with C2v symmetry gives excellent agreement between experimental and theoretical data. The structural parameters with error limits are (cf. Fig. 1): r(C1-C4)= 1.598 ±0.017 Å, r(C1-C2) = 1.505 ±0.005 Å, r(C2-C3) = 1.366 ± 0.015 Å, r(C1-F1) = 1.328±0.015 Å, r(C2-F2) = 1.319±0.007 Å, ∠F1C1C4 = 118.7±0.7°, ∠F2C2C3 = 133.6±0.7°, τ= 121.8±2.0°, and δ = -7.5±2.0°. Molecular orbital calculations by the CNDO/2 method gave τ = 119.8° and δ = ?4.2°.  相似文献   

17.
The ionic complex [(π-C5H5)2Zr(H2O)3]2+(CF3SO3?)2·THF, which corresponds to the 18-electron rule, is formed in the reaction of (π-C5H5)2Zr(CF3SO3)2(THF) with H2O in tetrahydrofuran. It crystallizes in the hexagonal space group P63 with Z = 6 and unit cell dimensions at ? 100°C of a 21.945(5) and c 8.711(3) Å. The geometry of the (π-C5H5)2Zr moiety (length of the vectors between Zr and the C5 ring centroids: 2.210 and 2.193 Å; angle between these vectors: 129.0°; angle between the C5 ring normals: 128.3°) agrees with that of neutral, four-coordinate (π-C5H5)2ZrX2 compounds. The three H2O ligands lie in the plane that bisects the angle between the C5 ring planes. The ZrO distances are 2.239(7), 2.195(7), and 2.261(7) Å. The CF3SO3? anions and the THF molecule of crystallization are packed around the complex cation in such a way that their oxygen atoms point towards the H2O ligands. The CF3 sides of the anion, on the other hand, are clustered together so as to produce hydrophobic domains in the crystal structure.  相似文献   

18.
The molecular structures of cis-3-hexene and of trans-3-hexene in the gas phase have been determined by electron diffraction combined with molecular mechanical calculations. For cis-3-hexene the data indicate the presence of the (+ac, +ac) and the (?ac, +ac) forms. In trans-3 -hexene three rotamers were observed, with an energy sequence E(+ac, +ac) ≈ E(?ac, +ac) < E(ac, sp). The refined rα0-structural parameters are: cis-3-hexene: C-H = 1.073 Å, CC = 1.330 Å, C(sp2)-C(sp3) = 1.505 Å, ∠CCH(in CH2) = 111.1°, ∠CCC = 111.4°, ∠(CC-C) = 129.1° trans-3-hexene: C-H = 1.078 Å, CC = 1.342 Å, C(sp2)-C(sp3) = 1.506 Å, ∠CCH(in CH2) = 109.3°, ∠CCC = 112.8, ∠CC—C = 124.1°The agreement between calculated and experimental geometries and vibrational amplitudes is good.  相似文献   

19.
The molecular structures (rα0 values) for XSCF3 with X = F, Cl and CF3 have been determined by electron diffraction of gases. While the geometry (C-F bond length and FCF angle) of the CF3 groups and the bond angle at the sulfur atom depend very little on the substituent X, the S-C bond length increases with decreasing electronegativity of X from 1.805 (3) Å for X = F to 1.824 (6) Å for X = Cl. Torsional force constants for the CF3 groups were derived from vibrational amplitudes. A strong increase of this force constant is observed between FSCF3 (fτ = 0.09 (2) mdyn Å) and CISCF3 (fτ = 0.18 (5) mdyn Å). The torsional frequencies derived from the electron diffraction experiment agree very well with the values observed in the far IR spectra for CISCF3, and CF3SCF3. A force field for CF3SCF3 has been derived from IR and Raman data.  相似文献   

20.
Crystal Structure of CF3TeTeCF3. Synthesis, Characterization, and Properties of CF3TeI Te2(CF3)2 crystallizes in the monoclinic space group P21/a with four formular units in the unit cell. The lattice constants are a = 10.13(1) Å, b = 11.489(7) Å, c = 6.822(8) Å and β = 101.20(8)°. CF3TeI is prepared by a quantitative reaction of Te2(CF3)2 with equimolar amounts of iodine. This compound is very instable, no isolation is possible. NMR spectra have been registrated. From metathesis reactions CF3TeX (X = C?CC6H5, t-C4H9, SCN, SC6F5) are prepared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号