首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 329 毫秒
1.
Electron spectra from He++, He+ and Li+ (10 to 1500 eV) ions colliding under grazing incidence with Li covered W (110) surfaces are reported. The results are compared with those obtained from thermal collisions of (23 S; 21 S) metastable He atoms. In these collisions 1s vacancies are either produced during the collision event (energetic He+ (Li +) collisions) or are brought into the collision (slow He++ (He+, He*) collisions). Population of the 2s orbitals by two electrons produces states which decay by intraatomic Auger processes: we observe autoionization of He** (2s 2) and Li** (1s 2s 2) as well as autodetachment of He?* (1s 2s 2). Alternatively the 1s-holes in the projectile or target (Li) can be filled by Auger processes involving one or two surface electrons. The processes leading to electron emission are studied as a function of the Li coverage in the submonolayer region (0≦ΘLi≦1Ml) and as a function of the projectile energy. It is concluded that with one or two 1s vacancies present in the projectile the double capture of two surface electrons constitutes an important process responsible for electron emission of low work function surfaces.  相似文献   

2.
The energy spectra of electrons released in thermal energy ionizing collisions of metastable helium and neon atoms with hydrogen iodide have been measured with high resolution and low background. The electron spectra, obtained for a mixed He(21 S, 23 S) beam, a pure He(23 S) beam, and a mixed Ne(3s 3 P 2,3 P 0) beam, are all characterized by the formation of theX 2Π i andA 2Σ+ states of HI+. For both He(21 S) + HI and He(23 S) + HI the spectra exhibit some broad features in the medium electron energy range which are attributed to ionization from an additional charge exchanged potential surface (He+ + HI?) in the entrance channel. For the first time, we have detected the low energy electrons in the He(21 S, 23 S) spectra due to autoionization of I** atoms which result from energy transfer to highly excited, dissociative HI** Rydberg states. The HI+ (X)2Π3/2:2Π1/2 fine-structure branching ratios vary significantly with the ionizing agent in a similar way as for the isoelectronic, atomic target case xenon.  相似文献   

3.
The first electron spectrometric study of the ionizing reaction of metastable He(23 S 1) atoms with ground state hydrogen atoms has been carried out with sufficiently high resolution to partially resolve the rotational structure due to formation of rovibrationally excited HeH+ (v, J) ions at two different beam source temperatures (300 K and 90 K). The electron energy spectrum has been reproduced in model quantum calculations, using a new large scale ab initio calculation of the He(23 S)+H(12 S)2Σ-potential. The imaginary part has been adjusted to yield a satisfactory fit to the measured spectrum. The collision energy dependence of the associative ionization electron spectra and of the total and partial ionization cross sections is discussed in some detail. No significant signs for limitations of the used local complex potential method, indicated by results of an earlier study of the He(23 S)+H(12 S) system, have been found in the present work, in which the calculations were carried out with an improved and corrected program.  相似文献   

4.
An electron spectrometric study has been performed on HBr using metastable helium and neon atoms as well as helium resonance photons. High resolution electron spectra were obtained for a mixed He(21 S, 23 S) beam, a pure He(23 S) beam, a mixed Ne(3s 3 P 2,3 P 0) beam, and for HeI VUV light. From the comparison of vibrational populations of HBr+ (X, v′) and HBr+ (A, v′), formed by either He* and Ne* Penning ionization (PI) or HeI photoionization, we conclude that HBr+ (X) formation by PI exhibits only little perturbation of HBr potentials, whereas HBr+ (A) formation by PI exhibits substantial bond stretching of HBr due to metastable atom attack preferably from the H end. For He(21 S) + HBr theX- andA-state vibrational peak shapes are substantially broader than for the He(23 S) + HBr case pointing to an additional, charge exchanged interaction (He+ + HBr?) in the entrance channel of the former system which is also responsible for a broad feature found at lower electron energies in the He(21 S, 23 S) induced PI electron spectra. For the first time, we have detected the low energy electrons in both the He(21 S) + HBr and He(23 S) + HBr spectra, associated with the major mechanism for the formation of Br+ ions: energy transfer to repulsive HBr** Rydberg states, dissociating to H(1s) and autoionizing Br** atoms. The HBr+ (X)2 II 3/2:2 II 1/2 fine structure branching ratios vary significantly with the ionizing agent in a similar way as for the isoelectronic, atomic target case krypton.  相似文献   

5.
A novel, accurate method for the absolute detection of metastable rare gas atoms is described and demonstrated. It involves a direct in situ determination of the electron emission coefficient γ for impact of the respective metastable atom on a conducting surface. γ is reliably obtained by a cw two-photon ionization — depletion technique: the reduction ΔI S in electron current from the detector surface due to efficient photoionization removal of the metastable flux is compared with the photoelectron current ΔI P (γ = ΔI SI P). The principle of the method, possible realization schemes for the different metastable rare gas atoms and the apparatus are described in detail. The method has been applied so far to metastable Ne* (3s 3 P 2), Ar* (4s 3 P 2), and Kr* (5s 3 P 2) atoms, and corresponding results for γ, obtained with five different chemically clean, polycrystalline surface materials and at two surface temperatures (300 K, 360 K) are reported. Whereas for Ne*, the value of γ (≈0.35) showed only a rather weak dependence on the surface material and temperature (as also found for a mixed He* (23 S, 21 S) beam), strong variations in γ, especially at 300 K, were detected for Ar* and Kr* (values between 0.25 and 0.003). Some applications of the described method, especially with regard to the determination of absolute reaction cross sections involving metastable rare gas atoms, are discussed.  相似文献   

6.
We report the spectra of electrons emitted after slow collisions (50 eV) of rare gas ions (He+, Ne+, Ar+, and Xe+) with partially cesiated W(110) surfaces. The electron spectra are discussed in terms of the two interatomic Auger processes, Auger Capture and Auger Deexcitation and the intra-atomic Auger process, Autodetachment of Rg* (He* (1s 2s 2 2 S) in the case of He). Model calculations including these processes can qualitatively reproduce the measured spectra as well as experimental values for the electron emission coefficients, . This is demonstrated for collisions of He+ ions and thermal metastable He atoms with clean and partially cesiated W(110).  相似文献   

7.
This beam was developed as a target for a crossed-beam electron-atom scattering experiment on the interaction of a polarized spin-1/2 electron with a polarized spin-1 atom. In the future this beam will be used in “Spin-Polarized Metastable Atom Deexcitation Spectroscopy” (SPMDS) for studying ferromagnetic surfaces without and with adsorbate layers. We use a discharge source for producing a beam of metastable helium atoms, a permanent sextupole magnet with a central stop at its exit for selecting He(23 S) atoms in the Zeeman substatem s =+1, a zero-field spin flipper for reversing the atomic beam polarization with respect to a magnetic guiding field, and a Stern-Gerlach magnet for analyzing the atomic polarization. At a distance of 90 cm beyond the exit of the sextupole, in the “interaction region” of an experiment, the polarized beam has a circular cross section of about 6 mm FWHM and a particle density of 1 · 107 atoms/cm3. The reversible spin polarization was determined asP=0.90±0.02. A possible contamination of the beam with metastable singlet atoms is included within this value; the ground-state He atoms are not considered to be part of the polarized beam. An observed contamination with long-lived Rydberg atoms can easily be destroyed by applying a high electric field.  相似文献   

8.
We have carried out experimental and theoretical studies of Penning ionization processes occurring in thermal energy collisions of state-selected metastable He*(23 S) and He*(21 S) atoms with ground state alkaline earth atoms X(X=Mg, Ca, Sr, Ba). Penning ionization electron energy spectra for these eight systems, measured with a crossed-beam set-up perpendicular to the collision velocity at energy resolutions 40–70 meV, are reported; relative populations of the different ionic X + (ml) states are presented and well depths D*e for the He*+X entrance channel potentials with uncertainties around 25 meV are derived from the electron spectra as follows: He*(23 S)+Mg/Ca/Sr/Ba: 130/250/240/260 meV; He*(21 S) +Mg/Ca/Sr/Ba: 300/570/550/670 meV. The spectra show substantial differences for the three ionic states X +(2 S), X +(2 P) and X +(2 D) and reveal that transitions to a repulsive potential — attributed to He+X +(2 P)2 Σ formation — are mainly involved for the X +(2 P) channel. Ab initio calculations of potential curves, autoionization widths, electron energy spectra and ionization cross sections are reported for the systems He*(23 S)+Ca and He*(21 S)+Ca. The respective well depths D e * are calculated to be 243(15) meV and 544(15) meV; the ionization cross sections at the experimental mean energy of 72 meV amount to 101 Å2 and 201 Å2, respectively. Very good overall agreement with the experimental electron spectra is observed.  相似文献   

9.
A method for measuring cross sections for electron-impact excitation out of the metastable levels of the He atom is described. A hollow cathode discharge is used to produce an atomic beam consisting of ground-level He atoms and the He(21S) and He(23S) metastable atoms. An electron beam of energy below 20 eV crosses the atomic beam exciting the metastable atoms to higher levels, and the intensity of the radiation emitted by atoms in these higher levels is utilized to determine the cross sections. Because of the very low concentration of metastable atoms in the atomic beam, the emission signal is extremely weak. A number of special techniques have been developed to detect these very low-level signals. Absolute calibration of the cross section is accomplished by referencing the emission signal that resulted from electron excitation out of the metastable level to the emission signal that resulted from the 23S33P or 21S31P laser optical absorption.  相似文献   

10.
Using crossed beams of ground state alkali atoms A (A = Li, Na, K, Rb, Cs) and metastable He(23 S), He(21 S) atoms, we have measured the energy spectra of electrons resulting in the respective Penning ionization processes at: thermal collision energies. The data are interpreted to yield the well depthD e * of the2Σ interaction potentials as follows: He(23 S)+A:D e * (A=Li)=868(20) meV;D e * (Na)=740(25) meV;D e * (K)=591(24) meV;D e * (Rb)=546(18) meV;D e * (Cs)=533(18) meV. He(21 S)+A:D e * (Li)=330(17) meV;D e * (Na)=277(24) meV;D e * (K)=202(23) meV;D e * (Rb)=219(18) meV;D e * (Cs)=277(18) meV. The well depth for He(23 S)+A(2Σ) is always close to 80% of the well depth for Li(2s)+A(X 1Σ). The ionization cross sections for He(21 S)+A are about 3 to 4 times larger than those for He(23 S)+A.  相似文献   

11.
An approach to calculating the energies and widths of resonances for atoms and ions with two and three electrons was developed on the basis of the stabilization method. The energies of 28 resonances of n S symmetry with the spin multiplicities n = 1, 2, 3, and 4 were calculated for H?, He, Li+, He?, and Li. The energies of several resonances were obtained for the first time. Four resonance widths for H?, He, and He? were determined. The calculation results are compared with experimental data and calculations performed by other authors. Very close agreement was obtained for resonance energies (uncertainties of from 0.005 to 0.5 eV) and widths (uncertainties of ~10–20%).  相似文献   

12.
An electron spectrometric study has been performed on HF using metastable helium and neon atoms as well as helium and neon resonance photons. High-resolution electron spectra were obtained for a pure He(23 S) beam, a mixed He(21 S, 23 S) beam, a mixed Ne(3s,3 P 2,3 P 0) beam, and for HeI and NeI VUV light. From the comparison of vibrational populations of HF+ (X 2£ i ,v′) and HF+ (A 2Σ+,v′) produced by He(23 S) metastables and HeI resonance photons, we conclude that there is only a slight perturbation of the HF (X 1Σ+) potential in He(23 S) Penning ionization; no perturbation is found for HF+ (X 2Π i ,v′) formation from Ne(3 P 2,0) metastable ionization of HF. For He(21 S)+HF theX- andA-ionic state vibrational peak shapes are substantially broader than in the He(23 S)+HF case pointing to an additional, charge exchanged interaction (He++HF?) in the entrance channel of the former system. The vibrational population found for NeI α photoionization of HF for formation of HF+ (X 2Π i ,v′) is found to differ considerably from that for NeI β photoionization and from the Franck-Condon factors for unperturbed HF(X 1Σ+) and HF+ (X 2Π i ) potentials suggesting the presence of an autoionizing superexcited state of HF in the energy vicinity of the NeI α resonance photons. The HF+ (X)2Π3/2:2Π1/2 fine-structure branching ratios vary significantly with the ionizing agent in a similar way as previously found in HCl and HBr.  相似文献   

13.
Electron spectra of tungsten (110) and of thin cobalt (0001) films, clean and after oxygen exposure, have been taken using metastable de-excitation spectroscopy (MDS). The spectra of remanently magnetized Co(0001), obtained with spin polarized MDS (SPMDS), show different intensities in the cobalt induced structure when reversing the polarization of the incident spin polarized He(23 S) atomic beam. Due to theextreme surface sensitivity and thespin selectivity of the de-excitation process, this is evidence of differences in thespin resolved density of states of theoutermost cobalt layer.  相似文献   

14.
Normal incidence circularly polarized VUV radiation with energies around 23 eV creates spin polarized photoelectrons from thick layers of Rb on Pt(111) and thus excites oriented 4p hole states. The preferential spin direction of the Auger electrons and its dependence upon the emission angle has been measured and is compared with the corresponding angular dependence of the primary photoelectron spin polarization also measured. Since the CVV Auger decay relates to as 2 pair of valence electrons, the cross comparison of results for photoelectrons and Auger electrons studies the questions on whether photoemission and Auger decay occur in sequence, assuming an independent two step model, and whether the valences-electrons couple to a singlet state configuration.  相似文献   

15.
The collisional behaviour of electronically excited silicon atoms in the 3p2(1S0) state, 1.909 eV above the 3p2(3P0) ground state, is investigated by time-resolved attenuation of atomic resonance radiation at λ = 390.53 nm (4s(1Po1)←3p2 (1S0)). The optically metastable Si(31S0) atoms were generated by the repetitive pulsed irradiation of SiCl4 and their decay monitored in the presence of added gases. Absolute quenching rate constants (kQ, cm3 molecule?1 s?1, 300 K) are reported for the following collision partners: He (?1.3 × 10?15), SiCl4 ((9.1 ± 1.4) × 10?11), O2 ((1.5 ± 0.2) × 10?11) and N2O ((4.3 ± 0.4) × 10?11). The results for O2 and N2O are compared with analogous data reported hitherto for Si(3p2(3PJ)) and with those for the other np2(1S0) states of the group IV atoms C, Ge, Sn and Pb. The rate data for the silicon atoms are considered in terms of the nature of the potential surfaces arising from symmetry arguments based on the weak spin orbit coupling approximation.  相似文献   

16.
Using crossed beams of metastable rare gas atoms Rg*(ms3 P 2,3 P 0) (Rg=Ne, Ar, Kr, Xe) and ground state sodium atoms Na(3s 2 S 1/2), we have measured the energy spectra of electrons released in the respective Penning ionization processes at thermal collision energies. For Rg*(3 P 2)+Na(3s), the spectra are quite similar for the different rare gases, both in width and shape; they reflect attractive interactions in the entrance channel with well depthsD* e [meV] decreasing slowly from Rg=Ne to Xe as follows: 676(18); 602(23); 565(26); 555(30). For Rg*(3 P 0)+Na(3s), the spectra vary strongly with the rare gas, indicating a change in the character of the interaction from van der Waals type attraction (Ne) to chemical binding for Kr and Xe with well depthsD* e [meV] of: 51(19); 107(25); 432(30); 530(50). These findings are explained through model calculations of the respective potential curves, in which the exchange and the spin orbit interaction in the excited rare gas and the molecular interaction between the two valences-electrons in terms of suitably chosen singlet and triplet potentials are taken into account. These calculations also explain qualitatively the experimental finding that the ratiosq 2/q 0 of the ionization cross sections for Rg*(3 P 2)+Na and Rg*(3 P 0)+Na vary strongly with the rare gas from Ne to Xe as follows: 15.8(3.2); 2.6(4); 1.4(2); 1.6(4).  相似文献   

17.
Energy distributions of electrons emitted from polycrystalline naphthacene due to the impact of metastable argon or krypton atoms were measured. The energy distribution peaks, except for large peaks appearing near zero eV, correspond to the kinetic energies estimated from photoelectron spectra on the assumption that the excitation energies of the metastable atoms are transferred to the electrons in the valence bands. The results are interpreted as the occurrence of Penning ionization (Auger de-excitation) on the naphthacene surface.  相似文献   

18.
We have carried out a comprehensive experimental and theoretical investigation of the autoionizing collision systems He*(23 S, 21 S) + He*(23 S). We present high resolution electron energy spectra, obtained with a single He* beam (average relative collision energy 〈E rel〉=1.6 meV) and with crossed He* beams (〈E rel〉> =61 meV). The spectra show substantial structure, and under single beam conditions fast oscillations due to the interference of incoming and outgoing heavy particle waves in the entrance channels are observed. Accurate ab initio potential curves for the seven lowest He*—He*(Σ) molecular states have been obtained from a Feshbach projection scheme, and width functions for He*(23 S) + He*(23 S) have been derived by Stieltjes imaging. Based on these ab initio data, detailed quantum mechanical calculations of the electron spectra have been carried out and provide a thorough understanding of the experimentally observed spectral features. Good overall agreement of the calculated spectra with the experimental data is observed. The close coincidence in the positions of the experimental and theoretical peaks, especially for He*(23 S) + He*(23 S), underlines the reliability of the ab initio potentials. In the He*(21 S) + He*(23 S) electron spectrum, the dominant peak is traced to be due to autoionization from the 23Σ+ g molecular state accessed via an avoided crossing. We also present a detailed discussion of the total ionization cross sections σtot and of the fraction σAItot for associative ionization together with a critical comparison with previous work. The ionization probabilities for close collisions in entrance channels, from which autoionization is spin-allowed, are near unity, and therefore the absolute values and the collision energy dependence of the total cross sections simply reflect the long-range behaviour of the excited state potentials.  相似文献   

19.
Using crossed beams and mass spectrometric ion detection, we have investigated the ionization of argon atoms and dimers in a skimmed supersonic beam by HeI (58.4 nm) and NeI (73.6, 74.4 nm) photons and by He(23,1 S) and state selected Ne(3s 3 P 2,3 P 0) metastable atoms. The cross section ratioq 22/q 1 (i.e. the cross sectionq 22 for formation of Ar 2 + ions from Ar2 divided by the total ionization cross sectionq 1 for Ar atoms), arbitrarily normalized to 1 for HeI impact, is found to vary weakly as follows: HeI/NeI/He(23, 1 S)/Ne(3 P 0)Ne(3 P 2)=1/1.136(9)/0.893(4)/1.034(12)/0.985(9). The results are qualitatively interpreted using available information on the intermolecular potentials and the two different ionization processes. The observation thatq 22/q 1 is 5% larger for Ne(3 P 0) than for Ne(3 P 2) is attributed to anomalies in the respective branching ratios for formation of the Ar+(2 P 3/2)/Ar+(2 P 1/2) ion states in conjunction with differences in the stability of the formed Ar-Ar+(2 P 3/2) and Ar-Ar+(2 P 1/2) molecular ions.  相似文献   

20.
Measurements of the Penning ionization cross section, σPI of D atoms by metastable He atoms show that σPI for the reaction He (2 1S) + D is much larger than σPI for He (2 3S) + D. In the relative velocity range νr = (2.3–4.8) × 105 cm/s (0.037–0.163 eV), σPI for He (2 1S) + D collisions was found to vary as νr?0.33.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号