首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
We studied the physical properties and the concentration profile of benzene+water+caprolactam mixtures near the fluid-fluid interface using self-consistent field (SCF) theory. This yields the interfacial tension which plays an important role in describing the stability of transient liquid droplets of one phase in the other. The studies were performed at a fixed temperature of 313K. Flory-Huggins binary interaction parameters and the compound lattice segment numbers are input parameters for the applied SCF theory. These parameters were derived from activity coefficient relations, which are used to describe experimental liquid-liquid and vapor-liquid phase equilibrium measurements. Using first principles, the benzene-water interface was studied and the resulting interfacial tension was found to be in agreement with experimental values. This study illustrates that caprolactam accumulates at the benzene-water interface, acting as a weak surfactant. The interfacial tension is also demonstrated to be affected by the caprolactam concentration and the SCF results are in fair agreement with the experimental observations.  相似文献   

2.
The process of filament-to-filament adhesion during polymer extrusion additive manufacturing (AM) is critically influenced by temperature distribution around the filament. Direct measurement of temperature distribution around the filament being deposited is, therefore, important for fully understanding this critical process. While past papers have reported side-view (x-z) temperature measurement using infrared (IR) thermography, this paper presents measurement of the in-plane (x-y) temperature field on the build plate during printing of the first layer by infrared thermography. This measurement is carried out from under the build plate. A small part of the build plate is replaced by an infrared-transparent window. In conjunction with an infrared right-angle prism mirror positioned underneath, direct measurement of in-plane temperature distribution is carried out with an infrared camera. With a thin graphite coating on the build plate, in-plane temperature field on the build plate is obtained, whereas experiments without the graphite coating result in direct measurement of the filament temperature distribution. Bottom-view measurements are shown to agree well with side-view measurements. Temperature fields on the build plate are measured as functions of time for single-line and multi-line printing. A few key features revealed by measurements include symmetrical and asymmetrical temperature distributions for single and multi-line printing, respectively, and the thermal influence between lines being limited only to the adjacent line. The in-plane temperature measurement approach complements past side-view measurements, and improves upon our understanding of thermal phenomena during polymer AM.  相似文献   

3.
This paper surveys the research carried out on single aerosol particles in the micron and submicron size range with emphasis on the work performed by the authors. The principles and design of the electrodynamic and electrostatic balances are reviewed, and experimental data for evaporating droplets in a stagnant gas at various total pressures and various temperature are compared with theoretical results for Knudsen aerosol evaporation and are used to determine Lennard-Jones interaction parameters, diffusivities and vapor pressures for relatively nonvolatile compounds. The use of the electrodynamic balance or “picoblance” developed to study aerosol particles of the order of a piogram is illustrated for diffusion-controlled droplet evaporation measurements, and new data and an analysis for binary dorplet evaporation are presented.  相似文献   

4.
A novel method for electroosmotic flow (EOF) measurement on paper substrates is presented; it is based on dynamic mass measurements by simply using an analytical balance. This technique provides a more reliable alternative to other EOF measurement methods on porous media. The proposed method is used to increase the amount and quality of the available information about physical parameters that characterize fluid flow on microfluidic paper–based analytical devices (μPADs). Measurements were performed on some of the most frequently used materials for μPADs, i.e., Whatman #1 , S&S, and Muntktell 00A filter paper. Obtained experimental results are consistent with the few previously reported data, either experimental or numerical, characterizing EOF in paper substrates. Moreover, a thorough analysis is presented for the quantification of the different effects that affect the measurements such as Joule effect and evaporation. Experimental results enabled, for the first time, to establish well-defined electroosmotic characteristics for the three substrates in terms of the magnitude of EOF as funtion of pH, enabling researchers to make a rational choice of the substrate depending on the electrophoretic technique to be implemented. The measurement method can be described as robust, reliable, and affordable enough for being adopted by researchers and companies devoted to electrophoretic μPADs and related technologies.  相似文献   

5.
Image-analyzing interferometry is used to measure the apparent contact angle and the curvature of a drop and a meniscus during condensation and evaporation processes in a constrained vapor bubble (CVB) cell. The apparent contact angle is found to be a function of the interfacial mass flux. The interfacial velocity for the drop during condensation and evaporation is a function of the apparent contact angle and the rate of change of radius of curvature. The dependence of velocity on the apparent contact angle is consistent with Tanner's scaling equation. The results support the hypothesis that evaporation/condensation is an important factor in contact line motion. The main purpose of this article is to present the experimental technique and the data. The equilibrium contact angle for the drop is found experimentally to be higher than that for the corner meniscus. The contact angle is a function of the stress field in the fluid. The equilibrium contact angle is related to the thickness of the thin adsorbed film in the microscopic region and depends on the characteristics of the microscopic region. The excess interfacial free energy and temperature jump were used to calculate the equilibrium thickness of the thin adsorbed film in the microscopic region.  相似文献   

6.
Processes that inject gases such as carbon dioxide and natural gas have long been and still continue to be used for recovering crude oil from petroleum reservoirs. It is well known that the interfacial tension between the injected gas and the crude oil has a major influence on the efficiency of displacement of oil by gas. When the injected gas becomes miscible with the crude oil, which means that there is no interface between the injected and displaced phases or the interfacial tension between them is zero, the oil is displaced with maximum efficiency, resulting in high recoveries. This paper presents experimental measurements of interfacial tension between crude oil and natural gases (using a computerized drop shape analysis technique) as a function of pressure and gas composition at the temperature of the reservoir from which the crude oil was obtained. The point of zero interfacial tension was then identified from these measurements by extrapolation of data to determine minimum miscibility pressure (MMP) and minimum miscibility composition (MMC). The gas-oil miscibility conditions thus obtained from interfacial tension measurements have been compared with the more conventional techniques using slim-tube tests and rising-bubble apparatus as well as predictive correlations and visual observations. The miscibility pressures obtained from the new VIT technique were 3-5% higher than those from visual observations and agreed well with the slim-tube results as well as with the correlations at enrichment levels greater than 30 mol% C2+ in the injected gas stream. The rising bubble apparatus yielded significantly higher MMPs. This study demonstrates that the VIT technique is rapid, reproducible, and quantitative, in addition to providing visual evidence of gas-oil miscibility.  相似文献   

7.
The element distribution in the Cu(3)Au(001) surface region has been determined on the basis of directional Auger electron spectroscopy polar profiles measurements and interpreted in the frame of thermodynamic approach formulated for the inhomogeneous systems by using the Néel sublattices concept. Both approaches, experimental and theoretical, allowed us to present the temperature dependence of element concentration in a layer resolved mode. The wide temperature range explored in the experiment ensured the large data base for the theoretical analysis which enabled us to propose the distribution of intra-layer and inter-layer pairwise interactions leading to proper temperature dependence of segregation profiles in the surface region. This kind of interaction distribution can be understood as strain induced.  相似文献   

8.
Thermo-responsive polymer films have enabled the development of various functional surfaces with switchable interfacial properties. Assessing the surface forces and friction on such films is of paramount importance. On the one hand, it allows us to extract a great deal of information on the interfacial properties of the films, e.g., adhesiveness and lubricity, and how they could be tuned using different stimuli. On the other hand, surface force measurements complement other thin-film analysis methods, e.g., ellipsometry, to better perceive the correlation between the molecular properties of the polymer chains and the interfacial properties of the film. On this basis, we will, herein, provide a concise review of some recent studies on surface forces and friction tuned by thermo-responsive polymer films. This outline comprises a summary of several research works addressing the effects of temperature, solvent composition, and salts on surface forces and friction. In the end, we briefly discuss a few select studies in which the regulation of surface forces by thermo-responsive polymers is examined with an emphasis on the potential applications.  相似文献   

9.
Evaporation constants of acoustically levitated drops from the homologue series of n-alkanes and 1-alkanols in ambient air have been evaluated by size and temperature measurements. The size of the pure liquid drops, within a diameter range of 0.1 to 2.5 mm, was monitored using a CCD camera, while temperature measurements were carried out by IR thermography. During drop evaporation, water from a humid environment with a relative humidity between 5 and 80% was condensed on the drop surface and in the case of n-pentane, the condensed water froze as a result of the evaporative cooling.  相似文献   

10.
The in situ observation of a sol‐to‐gel transition in fast evaporating systems is a challenging task and the lack of a suitable experimental design, which includes the chemistry and the analytical method, has limited the observations. We synthesise an acidic sol, employing only tetraethylorthosilicate, SiCl4 as catalyst and deuterated water; the absence of water added to the sol allows us to follow the absorption from the external environment and the evaporation of deuterated water. The time‐resolved data, obtained by attenuated total reflection infrared spectroscopy on an evaporating droplet, enables us to identify four different stages during evaporation. They are linked to specific hydrolysis and condensation rates that affect the uptake of water from external environment. The second stage is characterized by a decrease in hydroxyl content, a fast rise of condensation rate and an almost stationary absorption of water. This stage has been associated with the sol‐to‐gel transition.  相似文献   

11.
(1)H MAS NMR and temperature-dependent relaxation time measurements were carried out for the first time on ionic liquids confined in monolithic silica matrices and enabled us to show that the ionic liquids' dynamics experienced only a very small slowing-down. The confinement preserved the ionic liquids' properties and, moreover, allowed liquid-like behaviour at temperatures below the crystallisation temperature of genuine ionic liquids. This study highlights the interest of the ionogel approach to all-solid state devices with genuine IL properties.  相似文献   

12.
Wang F  Yang M  Burns MA 《Lab on a chip》2008,8(1):88-97
Microfluidic devices that reduce evaporative loss during thermal bioreactions such as PCR without microvalves have been developed by relying on the principle of diffusion-limited evaporation. Both theoretical and experimental results demonstrate that the sample evaporative loss can be reduced by more than 20 times using long narrow diffusion channels on both sides of the reaction region. In order to further suppress the evaporation, the driving force for liquid evaporation is reduced by two additional techniques: decreasing the interfacial temperature using thermal isolation and reducing the vapor concentration gradient by replenishing water vapor in the diffusion channels. Both thermal isolation and vapor replenishment techniques can limit the sample evaporative loss to approximately 1% of the reaction content.  相似文献   

13.
The studies of evaporative isotopic fractionation in controlled conditions are of particular importance for understanding the mechanism of evaporation fractionation in natural conditions. We present the measurements of the average isotopic fractionation factors during the evaporation of water having different initial isotopic compositions at constant temperature. The results show that the isotopic composition of residual water become more enriched over the time and the initial isotopic composition of evaporating water has considerable effect on the average isotopic fractionation factors. The average isotopic fractionation factors in evaporation of Water A and Water B under the present experimental conditions were found to be 0.9817 ± 0.0044 and 0.9887 ± 0.0031 for oxygen and 0.9178 ± 0.0182 and 0.9437 ± 0.0169 for hydrogen, respectively. The findings of this work should lead to a better understanding and use of stable isotope techniques in isotope hydrology by using a simple technique of evaporation pan.  相似文献   

14.
This paper presents a study on evaporation of pure water clusters. Molecular dynamics simulations between 20 ns and 3 micros of clusters ranging from 125 to 4096 molecules in vacuum were performed. Three different models (SPC, TIP4P, and TIP5P) were used to simulate water, starting at temperatures of 250, 275, and 300 K. We monitored the temperature, the number of hydrogen bonds, the tetrahedral order, the evaporation, the radial distribution functions, and the diffusion coefficients. The three models behave very similarly as far as temperature and evaporation are concerned. Clusters starting at a higher temperature show a higher initial evaporation rate and therefore reach the point where evaporation stop (around 240 K) sooner. The radius of the clusters is decreased by 0.16-0.22 nm after 0.5 micros (larger clusters tend to decrease their radius slightly more), which corresponds to around one evaporated molecule per nm(2). The cluster temperature seems to converge towards 215 K independent of cluster size, when starting at 275 K. We observe only small structural changes, but the clusters modeled by TIP5P show a larger percentage of molecules with low diffusion coefficient as t-->infinity, than those using the two other water models. TIP4P seems to be more structured and more hydrogen bonds are formed than in the other models as the temperature falls. The cooling rates are in good agreement with experimental results, and evaporation rates agree well with a phenomenological expression based on experimental observations.  相似文献   

15.
The effect of pH on the adsorption of catalase and lysozyme at the air-water interface has been studied using a combined surface pressure-interfacial shear rheology technique. The results presented show that the rate of development of interfacial phenomena increases as the pH of the subphase approaches the isoelectric point of the protein under investigation. The development of the measured interfacial rheological parameters is due to an increased rate of cross-link formation within the resultant interfacial gel. The formation of the interfacial gels has been modeled using a combination of the Smoluchowski theory for the coagulation of an aerosol or fog and classic rubber elasticity theory. The enhanced rate of cross-link formation at the isoelectric point is a result of an in-surface phase separation brought about by cooperative deionization of the protein molecules near their isoelectric point. Simultaneous measurements of surface pressure and interfacial rheology have enabled us to show that the development of a gel-like interfacial network coincides with observed increases in surface pressure.  相似文献   

16.
We report a new method for determining the saturation vapor pressure, Ps(T), of water at conditions below its triple point. Ps(T) appears as a parameter in the statistical rate theory (SRT) expression for the net evaporation flux. We use measurements of the interfacial conditions during steady-state evaporation and condensation experiments and SRT to determine the values of Ps(T) from 50 different experiments over a range of interfacial conditions. From these values of Ps(T), we develop an analytical expression and from it calculate the liquid-vapor latent heat, Llv(T), and the constant pressure specific heat, cp(L)(T). The calculated values of these properties are compared with those obtained from independent measurements. This comparison indicates the SRT expressions for Llv(T) and cp(L)(T) are consistent with the measurements over a range of temperatures.  相似文献   

17.
Recent experimental developments have enabled the measurement of dynamical forces between two moving liquid drops in solution using an atomic force microscope (AFM). The drop sizes, interfacial tension, and approach velocities used in the experiments are in a regime where surface forces, hydrodynamics, and drop deformation are all significant. A detailed theoretical model of the experimental setup which accounts for surface forces, hydrodynamic interactions, droplet deformation, and AFM cantilever deflection has been developed. In agreement with experimental observations, the calculated force curves show pseudo-constant compliance regions due to drop flattening, as well as attractive pull-off forces due mainly to hydrodynamic lubrication forces.  相似文献   

18.
The mass and heat transfer dynamics of evaporating multicomponent alcohol/water droplets have been probed experimentally by examining changes in the near surface droplet composition and average droplet temperature using cavity-enhanced Raman scattering (CERS) and laser-induced fluorescence (LIF). The CERS technique provides a sensitive measure of the concentration of the volatile alcohol component in the outer shell of the droplet, due to the exponential relationship between CERS intensity and species concentration. Such volatile droplets, which are probed on a millisecond time scale, evaporate nonisothermally, resulting in both temperature and concentration gradients, as confirmed by comparisons between experimental measurements and quasi-steady state model calculations. An excellent agreement between the experimental evaporation trends and quasi-steady state model predictions is observed. An unexpectedly slow evaporation rate is observed for the evaporation of 1-propanol from a multicomponent droplet when compared to the model; possible explanations for this observation are discussed. In addition, the propagation depth of the CERS signal, and, therefore, the region of the droplet from which compositional measurements are made, can be estimated. Such measurements, when considered in conjunction with quasi-steady state theory, can allow droplet temperature gradients to be measured and vapor pressures and activity coefficients of components within the droplet to be determined.  相似文献   

19.
Oscillatory wetting instabilities driven by capillary-gravitation forces have been explored very recently in the binary fluid Ga-Pb alloy [A. Turchanin, R. Tsekov and W. Freyland, J. Chem. Phys., 2004, 120, 11 171]. This system is characterized by a complete wetting transition at liquid-liquid coexistence. Due to its metallic nature the bulk and interfacial instabilities are strongly coupled via variation of the respective emissivities. In our previous work we have investigated these phenomena at different cooling cycles and at constant temperature inside the miscibility gap. In this study we present for the first time the observations of the oscillatory wetting instabilities also in heating cycles. The interfacial properties of a Ga0.95Pb0.05 alloy at conditions inside the miscibility gap have been investigated by following the second harmonic generation (SHG) intensity changes. Corresponding model calculations of the Pb-rich wetting film instabilities have been performed taking into account the effect of a temperature variation vertical to the bulk sample. The influence of this temperature variation on the occurrence of the oscillations is discussed.  相似文献   

20.
The determination of phase transition points of nine different ionic liquids (ILs) was performed by thermal analysis with simultaneous recording of conductivity. Conductivity of electrolyte solutions and ILs drastically changes during phase transitions and thus is an additional and very sensitive indicator for measuring phase transition points. Evaluation of temperature–time functions and conductivity–time functions with our computer-coupled automated equipment enabled the determination of melting temperatures with high accuracy and reliability. This claim is based on large samples, low temperature change rates and by regularly repeated measurements, i.e. at least seven measurements per IL. The melting temperatures of 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate, 1-butyl-1-methylpyrrolidinium tris(penta-fluoroethyl)trifluorophosphate, and 1-methyl-3-propylimidazolium iodide were, to our knowledge, determined for the first time. The melting temperatures of the other 1-butyl-1-methylpyrrolidinium-, 1-ethyl-3-methylimidazolium-, 1-hexyl-3-methylimidazolium-, and trimethylsulfonium-based ILs showed either a very good accordance with values published in literature or were distinctly higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号