首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Talotta C  Gaeta C  Neri P 《Organic letters》2012,14(12):3104-3107
Directional calixarene wheels were threaded along a bis(benzylalkylammonium) axle in a stereoprogrammed way to obtain the first examples of calixarene-based [3]rotaxanes. The base/acid treatment demonstrated that these systems act as nanosized molecular shuttles. An unprecedented switching between the tail-to-tail and head-to-head relative orientation of the calix-wheels was observed.  相似文献   

2.
分子梭在分子开关、分子逻辑门、信息存储等领域有着潜在的应用价值,是超分子化学领域的研究热点之一。本文综述了光驱动分子梭的研究进展:重点举例介绍了荧光光谱识别法和圆二色光谱识别法这两种识别光驱动分子梭位置状态的方法;阐述了构建光驱动轮烷分子梭的新型方法学,包括光驱动环糊精[2]轮烷和[1]轮烷分子梭的定向合成,举例介绍了光间接驱动的轮烷分子梭,以及光驱动[3]轮烷型分子梭和分子梭聚合物;举例说明了光驱动分子梭的功能性应用,用光驱动分子梭来模拟分子水平的逻辑门,研究光驱动分子梭体系中的能量传递机理,以及非溶液态的光驱动分子梭;并对分子梭今后的发展做了展望。  相似文献   

3.
Although the desirability of developing synthetic molecular machine systems that can function on surfaces is widely recognized, to date the only well-characterized examples of electrochemically switchable rotaxane-based molecular shuttles which can do so are based on the tetracationic viologen macrocycle pioneered by Stoddart. Here, we report on a [2]rotaxane which features succinamide and naphthalene diimide hydrogen-bonding stations for a benzylic amide macrocycle that can shuttle and switch its net position both in solution and in a monolayer. Three oxidation states of the naphthalene diimide unit can be accessed electrochemically in solution, each one with a different binding affinity for the macrocycle and, hence, corresponding to a different distribution of the rings between the two stations in the molecular shuttle. Cyclic voltammetry experiments show the switching to be both reversible and cyclable and allow quantification of the translational isomer ratios (thermodynamics) and shuttling dynamics (kinetics) for their interconversion in each state. Overall, the binding affinity of the naphthalene diimide station can be changed by 6 orders of magnitude over the three states. Unlike previous electrochemically active amide-based molecular shuttles, the reduction potential of the naphthalene diimide unit is sufficiently positive (-0.68 V) for the process to be compatible with operation in self-assembled monolayers on gold. Incorporating pyridine units into the macrocycle allowed attachment of the shuttles to an acid-terminated self-assembled monolayer of alkane thiols on gold. The molecular shuttle monolayers were characterized by X-ray photoelectron spectroscopy and their electrochemical behavior probed by electrochemical impedance spectroscopy and double-potential step chronoamperometry, which demonstrated that the redox-switched shuttling was maintained in this environment, occurring on the millisecond time scale.  相似文献   

4.
Although various methods for switching the positions of macrocycles in bistable rotaxane-based molecular shuttles have been developed, exploiting such movements to trigger property changes has thus far received little attention. Here we describe one of the first examples of a property change achieved through a controlled large-amplitude translational motion in a rotaxane; a novel type of chiroptical switch is described, in which light-induced translation of the macrocycle along the thread of a [2]rotaxane produces a strong induced circular dichroism (ICD) response only when the macrocycle is hydrogen-bonded to a chiral peptide station.  相似文献   

5.
Immobilization of light-driven molecular shuttles onto the surface of the silicon nanowires (SiNWs) was realized. The α-cyclodextrins as the shuttles could be reversibly translocated along the thread by the optical stimuli. Such SiNWs-based molecular shuttles also exhibited sequential logic with optical stimuli as the input and fluorescence as the output.  相似文献   

6.
Two new [2]rotaxane-based molecular shuttles, in which a mechanically bound dibenzo[24]crown-8 (DB24C8) macroring shunts back and forth between two dialkylammonium recognition sites situated on a chemical dumbbell, have been constructed by a novel synthetic strategy that relies upon the use of the tert-butoxycarbonyl (Boc) protecting group. During the syntheses of both molecular shuttles, this protecting group masks a dialkylammonium recognition center which is liberated only after the [2]rotaxane constitution is established. In both cases, the molecular shuttles' other dialkylammonium center is essential for the rotaxane-forming reactions and it ensures that DB24C8 is interpenetrated by threadlike precursors, as a result of noncovalent bonding interactions, to produce [2]pseudorotaxanes which are stoppered subsequently through 1,3-dipolar cycloadditions between azides and bulky acetylenedicarboxylates. The new molecular shuttles have been examined by means of dynamic 1H NMR spectroscopy, which reveals that the movements of the DB24C8 macroring are very highly dependent both on solvent properties and on the nature of the spacer unit linking the two dialkylammonium centers. Thus, DB24C8 shunts facilely between the dialkylammonium centers when the shuttles are dissolved in solvents that readily donate their nonbonding electrons into noncovalent bonds, e.g., DMF, and when spacer units that do not offer much steric resistance to shuttling, e.g., hexamethylene, are used. On the other hand, shuttling is difficult in solvents that are less inclined to donate their electrons into noncovalent bonds, e.g., (CDCl2)2, and when relatively bulky benzenoid spacer units, e.g., p-xylylene, link the two dialkylammonium centers. It has been proposed that the DB24C8 might act as a "ferry" which carries a proton between dialkylammonium and dialkylamine moieties in a singly protonated [2]rotaxane by means of ion-dipole interactions.  相似文献   

7.
Solvent driven molecular shuttles containing a pyrene‐connected macrocycle and an intramolecular charge‐transfer (ICT) chromophore stopper are constructed. In one of the molecular shuttles, a long C‐10 chain is introduced in the thread to separate the peptide station and the ICT stopper. The macrocycle stays in the peptide station in apolar solvents and moves to the C10‐chain station in highly polar solvents. This moving process alters the electronic interaction between the pyrene unit in the macrocycle and the ICT stopper, which induces the change of the pyrene fluorescence emission. The molecular shuttle exhibits stronger emission when the macrocycle is adjacent to the ICT stopper.  相似文献   

8.
A series of macrocyclic azobenzene-based chiral photoswitches have been judiciously designed, synthesized, and characterized. In the molecular structures, binaphthyl is covalently linked to ortho-positions of azobenzene, and four different substituents are linked to 6,6′-positions of binaphthyl. The photoswitches show enhanced helical twisting power (HTP) when doping in commercially available achiral liquid crystals to form self-organized helical superstructures, i.e., cholesteric liquid crystals (CLCs). All the photoswitches exhibit reversible photoisomerization driven by visible light of different wavelengths in both organic solvent and liquid crystals. The photoswitches with shorter substituents enable handedness inversion of CLCs upon photoisomerization. These are the first examples of ortho-linked azobenzene-based photoswitches that enable handedness inversion in CLCs. The photoswitches with longer substituents display only HTP values decreasing while maintaining the same handedness.  相似文献   

9.
The use of 8,8′-diaryl-substituted 3,3′-biisoquinolines allows the construction of new multi-component assemblies that are inaccessible with the 2,9-diaryl-substituted 1,10-phenanthroline ligands previously developed by the Sauvage group. This is due to the sterically non-hindering nature of the new chelates, which makes three-component entanglements around octahedral metal centres such as iron(II), cobalt(II) and ruthenium(II) readily possible. Among the newly synthesized molecular assemblies are [3]rotaxanes and [3]pseudorotaxanes in which two molecular strings pass through a single macrocycle, as well as molecular shuttles that exhibit greatly improved shuttling kinetics when compared to previously investigated molecular machines that are based on copper(I)/copper(II) redox chemistry.  相似文献   

10.
Rotaxane‐based molecular shuttles are often operated using low‐symmetry axles and changing the states of the binding stations. A molecular shuttle capable of directional shuttling of an acid‐responsive cone‐like macrocycle on a single‐state symmetric dumbbell axle is now presented. The axle contains three binding stations: one symmetric di(quaternary ammonium) station and two nonsymmetric phenyl triazole stations arranged in opposite orientations. Upon addition of an acid, the protonated macrocycle shuttles from the di(quaternary ammonium) station to the phenyl triazole binding station closer to its butyl groups. This directional shuttling presumably originates from charge repulsion and an orientational binding preference between the cone‐like cavity and the nonsymmetric phenyl triazole station. This mechanism for achieving directional shuttling by manipulating only the wheels instead of the tracks is new for artificial molecular machines.  相似文献   

11.
Biomolecular motors, which convert chemical energy into mechanical work in intracellular processes, have high potential in bionanotechnology in vitro as molecular shuttles or nanoscale actuators. In this context, guided elongation of actin filaments in vitro could be used to lay tracks for myosin motor-based shuttles or to direct nanoscale actuators based on actin filament end-tracking motors. To guide the direction of filament polymerization on surfaces, microcontact printing was used to create tracks of chemically modified myosin, which binds to, but cannot exert force on, filaments. These filament-binding tracks captured nascent filaments from solution and guided the direction of their subsequent elongation. The effect of track width and protein surface density on filament alignment and elongation rate was quantified. These results indicate that microcontact printing is a useful method for guiding actin filament polymerization in vitro for biomolecular motor-based applications.  相似文献   

12.
For the purpose of developing higher level mechanically interlocked molecules (MIMs), such as molecular switches and machines, a new rotaxane system was designed in which both the 1,2‐bis(pyridinium)ethane and benzimidazolium recognition templating motifs were combined. These two very different recognition sites were successfully incorporated into [2]rotaxane and [3]rotaxane molecular shuttles which were fully characterized by 1H NMR, 2D EXSY, single‐crystal X‐ray diffraction and VT NMR analysis. By utilizing benzimidazolium as both a recognition site and stoppering group it was possible to create not only an acid/base switchable [2]rotaxane molecular shuttle (energy barrier 20.9 kcal?mol?1) but also a [3]rotaxane molecular shuttle that displays unique dynamic behavior involving the simultaneous motion of two macrocyclic wheels on a single dumbbell. This study provides new insights into the design of switchable molecular shuttles. Due to the unique properties of benzimidazoles, such as fluorescence and metal coordination, this new type of molecular shuttle may find further applications in developing functional molecular machines and materials.  相似文献   

13.
Simple one-pot syntheses allow the preparation of [2]rotaxane-based degenerate molecular shuttles featuring the recognition of pyridinium ions by BPX26C6 macrocycles. Because of the weak interactions between the BPX26C6 and pyridinium units in the [2]rotaxanes in CD3COCD3, the rates of shuttling of the BPX26C6 moieties between the pyridinium stations are rapid, relative to those of DB24C8-based shuttles, on the NMR spectroscopic time scale at ambient temperature.  相似文献   

14.
The first examples of the use of hydroxyl inversion reactions to prepare the gibberellin plant hormones are described. Treatment of 2- and 3-mesylates with caesium acetate gave, after hydrolysis, good yields of the required 2β- and 3β-hydroxygibberellins. Alternatively inversion of the 2-mesylate and hydrolysis of the 7-methyl ester may be achieved in one-pot by treatment of (2) with potassium superoxide.  相似文献   

15.
Nanotechnology promises to enhance the functionality and sensitivity of miniaturized analytical systems. For example, nanoscale transport systems, which are driven by molecular motors, permit the controlled movement of select cargo along predetermined paths. Such shuttle systems may enhance the detection efficiency of an analytical system or facilitate the controlled assembly of sophisticated nanostructures if transport can be coordinated through complex track networks. This study determines the feasibility of complex track networks using kinesin motor proteins to actively transport microtubule shuttles along micropatterned surfaces. In particular, we describe the performance of three basic structural motifs: (1) crossing junctions, (2) directional sorters, and (3) concentrators. We also designed track networks that successfully sort and collect microtubule shuttles, pointing the way towards lab-on-a-chip devices powered by active transport instead of pressure-driven or electroosmotic flow.  相似文献   

16.
This paper presents original effects induced by temperature cycling on the transitional phase inversion of emulsions, stabilized by a nonionic polyethoxylated C18E6 surfactant model. The phase inversion follow-up is performed by electrical conductivity measurements, which involves focusing the study on the shape and location of the emulsion inversion region. In that way, new observations are brought out as a gradual evolution of the emulsion inversion along the cycling process. Two alternative approaches are considered for tackling these results: (i) first, a molecular approach regarding the particular organization and rearrangement of water clusters surrounding the surfactant polymer polar head, and (ii) second, a thermodynamic approach only considering the whole Gibbs free energy of the system. The volumic approaches are transposed, here, to the water/oil interface, and disclose that the phase inversion zone is included in a metastable region, able to stabilize for a given temperature, either metastable O/W emulsions or stable W/O ones. In that way, this study proposes novel and complementary insights into the phenomena governing the emulsion phase inversion.  相似文献   

17.
In this paper, the fuzzy symmetry of some prototypical linear molecules has been analyzed. The results show that some molecular orbitals (MOs) are less symmetrical but some others are more symmetrical than the molecular skeleton, which the MOs correspond to. The membership functions of space inversion for MOs are closely related to the chemical characteristics of the MOs. Sometimes, although the symmetry of a molecular skeleton is not obvious, however that of some MO is quite obvious. The membership functions of the fuzzy inversion symmetry depend on the choice of the position of the center of inversion. As compared to those of diatomic molecules and linear tri-atomic molecules, the linear polyatomic molecules in which a distinctive fuzzy symmetry of space translation may exist, and thus a significant effect on their properties can be expected.  相似文献   

18.
Three charge-transfer chromophore-terminated [2]rotaxanes were synthesized, using a high-yield [2 + 2]cycloaddition reaction in apolar solvent at room temperature. Two solvent-driving molecular shuttles were constructed, which exhibit distinct conformations in different solvent as a result of the shuttling movement of the macrocycle.  相似文献   

19.
Control of structural order at the molecular level for both conventional linear polymers and conjugated polymers with valuable opto‐electronic properties has major consequence on the macroscopic properties of these polymers. Though the traditional means of orientation of polymer was mechanical deformation, presently extensive works are concerned with a more controlled way of orientation: epitaxial crystallisation. Most of the first documented examples of epitaxial growth of conventional polymers on single crystals followed the well‐established geometrical rules of best matching. However, recent examples show off more subtle rules of selection. Analogous cases, following or breaking the matching rules, have been observed for diacetylenes ordered via epipolymerisation on single crystals. Hereafter, representative examples of the structural matching rules are depicted first, and then recent examples, which depart from the simple geometrical fitting, are described. The analysis of the former leads to define the subtle matching rules applying for polymers linked to their conformational adaptability. The analysis of the latter gives the opportunity to discuss the relative influence of geometrical and molecular interactions between the deposit and the substrate.  相似文献   

20.
Fréchet‐type dendrons (G0–G3) were added as both axle stoppering units and cyclic wheel appendages in a series of [2]rotaxanes, [3]rotaxanes, and molecular shuttles that employ 1,2‐bis(pyridinium)ethane axles and 24‐membered crown ethers wheels. The addition of dendrimer wedges as stoppering units dramatically increased the solubility of simple [2]rotaxanes in nonpolar solvents. The X‐ray structure of a G1‐stoppered [2]rotaxane shows how the dendritic units affect the structure of the interlocked components. Increased solubility allows observation of how the interaction of dendritic units on separate components in interlocked molecules influences switching properties and molecular size. In a series of [2]rotaxane molecular shuttles incorporating two recognition sites, it was demonstrated that an increase in generation on either the stoppering unit or cyclic wheel could influence both the rate of shuttling and the site preference of the wheel on the axle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号