首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two low cytotoxic fluorescence probes Rb1 and Rb2 detecting Fe3+ were synthesized and evaluated. Rb1 and Rb2 exhibited an excellent selectivity to Fe3+, which was not disturbed by Ag+, Li+, K+, Na+, NH4+, Fe2+, Pb2+, Ba2+, Cd2+, Ni2+, Co2+, Mn2+, Zn2+, Mg2+, Hg2+, Ca2+, Cu2+, Ce3+, AcO?, Br?, Cl?, HPO42?, HSO3?, I?, NO3?, S2O32?, SO32? and SO42? ions. The detection limits were 1.87 × 10?7 M for Rb1 and 5.60 × 10?7 M for Rb2, respectively. 1:1 stoichiometry and 1:2 stoichiometry were the most likely recognition mode of Rb1 or Rb2 towards Fe3+, and the corresponding OFF–ON fluorescence mechanisms of Rb1 and Rb2 were proposed.  相似文献   

2.
Anthroneamine derivatives 13 (H2O:DMSO; 9:1, HEPES buffer, pH 7.0 ± 0.1) undergo highly selective fluorescence quenching with Hg2+. The observed linear fluorescence intensity change allows the quantitative detection of Hg2+ between 200 nM/40 ppb—12 μM/2.4 ppm even in the presence of interfering metal ions viz. Na+, K+, Mg2+, Ca2+, Ba2+, Cr3+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Ag+, Cd2+, Pb2+. Probes 13 and their Hg2+ complexes also show the broad pH resistance for their practical applicability.  相似文献   

3.
A simple, low cost and sensitive voltammetric sensor was developed for the simultaneous detection of Pb2+, Cd2+, and Zn2+ based on a disposable carbon fiber rod (CFR). The important factors to enhance the sensing property were creation of a clean surface by dealing with CFR at a high potential and electrochemical deposition of Bi film to improve the accumulation of heavy metal ions.  相似文献   

4.
In this work, we report a novel fluorescence chemosensor HM based on the coumarin fluorophore for the quantification of Zn2+ and AcO?. HM specifically binds to Zn2+ in the presence of other competing cations, and evident changes in UV–vis and fluorescence spectra in HEPES buffer are noticed. The in situ generated HM-Zn2+ complex solution exhibit a high selectivity toward AcO? via Zn2+ displacement approach. The detection limits of HM for Zn2+ and HM-Zn2+ for AcO? were estimated to be 7.24 × 10?8 M and 9.41 × 10?8 M, respectively. HM and the resultant complex HM-Zn2+ exhibit low cytotoxicity and cell-membrane permeability, which makes them capable of Zn2+ and AcO? imaging in living Hep G2 cells. A B3LYP/6-31G(d,p) basis set was employed for optimization of HM and HM-Zn2+ complex.  相似文献   

5.
A new tetraphenylethene-based fluorescent probe 2-(quinolin-8-yliminomethyl)-4-triphenylvinyl-phenol (HL) for detecting Zn2+ ion through the excited state intramolecular proton transfer (ESIPT) and chelation enhanced fluorescence (CHEF) processes has been designed and synthesized. The results show that HL emits relatively strong blue fluorescence at 460 nm without Zn2+ ion, however, probe HL displays highly pink fluorescent emission at 600 nm when adding Zn2+ ion. The fluorescent emission of HL appears an extremely large Stokes shift, which effectively reduces the interference of background signal. The limit of detection of HL for Zn2+ ion can reach to 9.0 × 10–8 M.  相似文献   

6.
Quinoline-based fluorescent probe as a recognition unit was designed and synthesized in this study. The probe R1 displayed excellent selectivity and sensitivity for cadmium ions (Cd2+) over a wide range of metal ions in acetonitrile-water (MeCN-H2O) mixed solution. In order to better understand the recognition mechanism between probe and Cd2+, the density functional theory calculations were performed. Finally, the colorimetric experiment result was observed and conveniently monitored by the naked eye, and a visual detection limit of 4 × 10?6 mol L?1 was achieved. These experimental results indicated the promising potential of the probe to detect Cd2+ in biological system. Furthermore, the probe R1 was successfully used for the highly sensitive detection of Cd2+ in living cells.  相似文献   

7.
A novel quinoline-functionalized Schiff-base derivative PY was designed and synthesized. Sensor PY displayed highly selective and sensitive fluorescence enhancement and naked-eye color change to Fe3+ in the presence of other competing cations. The mechanisms have been supported by Job’s plot evaluation, FT-MS and theoretical calculations. The in situ generated PY-Fe3+ complex solution exhibited a high selectivity toward PPi via Fe3+ displacement approach. The detection limits of sensor PY to Fe3+ and PY-Fe3+ complex to PPi were estimated to be 4.24 × 10?8 M and 8.18 × 10?8 M, respectively. This successive recognition feature of sensor PY makes it has a potential utility for Fe3+ and PPi detection in aqueous solution. A B3LYP/6-31G(d,p) basis set was employed for optimization of PY and PY-Fe3+ complex.  相似文献   

8.
A pyrene based chemosensor was designed and synthesized. The pyrene fluorophore was connected with a pyridine unit through a Schiff base structure to give the sensor (L). L was tested with a variety of metal ions and exhibited high colorimetric selectivities for Cu2+ and Fe3+ over other ions. Upon binding with Cu2+ or Fe3+, L showed an obvious optical color change from colorless to pink for Cu2+ or orange for Fe3+ over a wide pH range from 3 to 12. Moreover, the fluorescence of L at 370 nm decreased sharply after bonding with Fe3+, while other metal ions including Cu2+ had no apparent interference. Thus, using such single chemosensor, Cu2+ and Fe3+ can be detected independently with high selectivity and sensitivity. The limits of detection toward Cu2+ and Fe3+ were 8.5 and 2.0 μM, respectively. DFT calculation results also proved the formation of stable coordination complexes and the phenomenon of fluorescence quenching by Fe3+. Furthermore, L was also successfully used as a bioimaging reagent for detection of Fe3+ in living cells.  相似文献   

9.
A colorimetric and fluorescent probe L has been designed and synthesized, which bearing the double azine moiety and showing a detection limit of 2.725 × 10?7 M towards Zn2+. Based on the basic recognition mechanism of ESIPT and CHEF effect, the L has high selectivity and sensitivity to only Zn2+ (not Fe3+, Hg2+, Ag+, Ca2+, Co2+, Ni2+, Cd2+, Pb2+, Cr3+, and Mg2+) within the physiological pH range (pH = 7.0–8.4) and showed a fluorescence switch. Moreover, this detection progress occured in the DMSO/H2O ~ HEPES buffer (80/20, v/v; pH 7.23) solution which can conveniently used on test strip.  相似文献   

10.
A novel fluorescent sensor (AQTF1) based on the N-(quinolin-8-yl) tetrahydrofuran-2-carboxamide was designed and synthesized. This new sensor demonstrated high selectivity for the Zn2+ without the interference from Cd2+. The detection limit of this probe was calculated to be 10.8 nM for Zn2+. The in situ prepared AQTF1-Zn2+ complex was used for detection of H2PO4? and displayed good selectivity from the common anions. Furthermore, the AQTF1 displayed good ratiometric response for the relay recognition for Zn2+ and H2PO4?.  相似文献   

11.
Several multinuclear ferrocenyl–ethynyl complexes of formula [(η5-C5H5)(dppe)MII?CC–(fc)n–CC–MII(dppe)(η5-C5H5)] (fc = ferrocenyl; dppe = Ph2PCH2CH2PPh2; 1: MII = Ru2+, n = 1; 2: MII = Ru2+, n = 2; 3: MII = Ru2+, n = 3; 4: MII = Fe2+, n = 2; 5: MII = Fe2+, n = 3) were studied. Structural determinations of 2 and 4 confirm the ferrocenyl group directly linked to the ethynyl linkage which is linked to the pseudo-octahedral [(η5-C5H5)(dppe)M] metal center. Complexes of 15 undergo sequential reversible oxidation events from 0.0 V to 1.0 V referred to the Ag/AgCl electrode in anhydrous CH2Cl2 solution and the low-potential waves have been assigned to the end-capped metallic centers. The solid-state and solution-state electronic configurations in the resulting oxidation products of [1]+ and [2]2+ were characterized by IR, X-band EPR spectroscopy, and UV–Vis at room temperature and 77 K. In [1]+ and [2]2+, broad intervalence transition band near 1600 nm is assigned to the intervalence transition involving photo-induced electron transfer between the Ru3+ and Fe2+ metal centers, indicating the existence of strong metal-to-metal interaction. Application of Hush’s theoretical analysis of intervalence transition band to determine the nature and magnitude of the electronic coupling between the metal sites in complexes [1]+ and [2]2+ is also reported. Computational calculations reveal that the ferrocenyl–ethynyl-based orbitals do mix significantly with the (η5-C5H5)(dppe)Ru metallic orbitals. It clearly appears from this work that the ferrocenyl–ethynyl spacers strongly contribute in propagating electron delocalization.  相似文献   

12.
A new rhodamine-based chemosensor was synthetized through a modified copper-catalyzed [3+2]-cycloaddition of an azidocoumarin with an alkynyl-rhodamine. Its sensing properties toward various metal cations in aqueous solutions were investigated by colorimetric changes, UV–vis and fluorescence spectroscopies. The sensor exhibited a high selectivity for Cr2+ over Cr3+ and other divalent cations such as Cu2+, Mg2+, Zn2+, Ca2+, Cd2+, Co2+, Hg2+ and Ni2+. The linear range of detection by fluorescence spectroscopy is 0.07–3.5 mM, with a detection limit of ca. 64 μM. The binding mode of Cr2+ with the sensor was rationalized through experimental evidences.  相似文献   

13.
A highly sensitive and selective naked-eye probe, 2,5-bis[3-benzyl-2-methylbenzothiazole]-croconaine (BMC) for sensing of Fe3+ was synthesized and characterized. The BMC can selectively recognize Fe3+ among the test cations (Ni2+, Mg2+, Cu2+, Ca2+, Na+, K+, Cr3+, Ag+, Ba2+, Zn2+, Pb2+, Al3+, Fe3+, Cd2+, Co2+) in DMF/H2O (4:1, v/v). The binding constant of BMC-Fe3+ was evaluated by using Benesi-Hildebrand plot. Simultaneously, the binding mode of BMC-Fe3+ was supporting by Job's plot, ESI-MS, FT-IR and 1H NMR. Correspondingly, the morphology of chelate complex was investigated by FESEM. Moreover, Fe3+ and EDTA could be employed as inputs and the fluorescence emission intensity which was 816 nm as output so that a molecular logic gate could be realized.  相似文献   

14.
A novel pyrene-based receptor bearing benzothiazole was synthesized as a good turn-on fluorescent sensor for the recognition of Zn2+. The probe showed an excellent selectivity for Zn2+over most other competing ions (eg, Cr3+, Li+, Cd2+, Al3+, Pb2+, Li+, Mg2+, Ag+, Ca2+, Ni2+, Mn2+, Fe3+, Hg2+, Ba2+, K+, Na+, Cu2+, Fe2+) in EtOH-HEPES (65:35, v/v, pH?=?7.20), which might be attributed to the photoinduced electron transfer (PET) mechanism. The formation of 1:1 stoichiometric PBZ-Zn2+ complex was determined based on the Job's plot, 1H NMR titration and ESI-MS. The binding constant of the complex was 4.04?×?104?M?1 with a detection limit of 2.58?×?10?7?M. The potential application of the PBZ in real water samples for recognizing Zn2+ was investigated. Bio-imaging study also revealed that PBZ could be applied to detecting Zn2+ in live cells. These results indicated that PBZ could be a favorable probe for Zn2+.  相似文献   

15.
Three novel Zn(II) complexes,[Zn4L1Cl4]-3H2O(1),[Zn4L2Cl4]-2DMF(2) and[Zn4L3Cl4]H2O(3),have been synthesized and structurally characterized.In these complexes,interesting 32-membered dodecadentate macrocyclic ligands were generated in situ by ’2 + 2’ type condensation reactions between a tetraamine and various dialdehydes.All the complexes are isostructurally tetranuclear Zn(Ⅱ) complexes,containing endogenous alkoxo and phenoxo bridges.Applications of the macrocyclic ligands as Zn2+ sensors have been investigated.Take H4L1 for example,it exhibits a 4-fold fluorescence enhancement upon the addition of 2 equiv.of Zn2+ in MeOH.  相似文献   

16.
A simple highly sensitive and selective turn-on fluorescent chemosensor L based on bis-Schiff-base for Pb2+ ions was synthesized and characterized by spectroscopic techniques. L having high binding affinity towards Pb2+ ions of 2.10 × 104 M?1 selectively detects Pb2+ ions with almost no interference among various competitive ions by a 11-fold fluorescent enhancement in CH3CN/H2O (95:5, v/v) solution over a wide pH range. Moreover, sensor L displayed a lower detection limit of 3.80 × 10?7 M, which is low enough for sensing sub-millimolar concentration of Pb2+ encountered practically.  相似文献   

17.
A fluorescent probe based PET mechanism was designed, and the probe could image endogenous release of Zn2+ upon H2O2 stimulation in SH-SY5Y cells.  相似文献   

18.
Luminescent CdSe-ZnS quantum dots (QDs) were modified with bovine serum albumin (BSA) and used as selective copper ion probe. The fluorescence of the water-soluble QDs can be quenched only by Cu2+ and Fe3+ in physiological buffer solution. Approximate concentrations of other physiologically important cations, such as Zn2+, Na+ and K+ etc. have no effect on the fluorescence. Adding F to form the colorless complex FeF63− can eliminate the interference of Fe3+. The detection limit of Cu2+ ions was 10 nM. The results can be explained in terms of strong binding of Cu2+ onto the surface of CdSe resulting in a chemical displacement of Cd2+ ions and the formation of CuSe on the surface of the QDs.  相似文献   

19.
The dipodal ligands (Im) and (BIm) as well as complexes [FeLCl3] [L = Im (1) and BIm (2)] have been prepared and studied using spectroscopic techniques. The magnetic moment, IR, electronic (ligand field), FAB-mass and NMR spectral data indicate a hexa-coordinate geometry around high-spin state Fe3+ where the ligands coordinate as a tridentate [N,N,N] chelating agent. 57Fe-Mössbauer spectral data confirmed the presence of a ligand asymmetry around Fe3+ in a high-spin state electronic configuration (t2g3,eg2, S = 5/2) with nuclear transition Fe(±3/2  ±1/2) exhibiting Kramer's double degeneracy. The molecular computations provided the optimum energy perspective plots for the molecular geometries giving the important structural data.  相似文献   

20.
《Analytical letters》2012,45(17):3074-3087
Abstract

Insoluble porous solid, macrocyclic 22-membered ring, 1-oxa-6,9,12,15,18-pentaaza-2,22-disilacyclododocosane polysiloxane ligand system has been prepared by the reaction of a macro-silane agent with tetraethylorthosilicate. The macro-silane agent was prepared by the reaction of imino-bis(N-2-aminoethylacetamide) ligand with 3-iodopropyltrimethoxysilane in 1:3 molar ratio. The new prepared polysiloxane system exhibits variable potentials for the extraction of metal ions (Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Ag+, Cd2+, Hg2+, and Pb2+) from aqueous solutions. The ligand system shows high capacity to extract silver, lead, and mercury. Chemisorption of the metal ions by the ligand system at the optimum conditions was found in the order Ag + > Pb2+ > Hg2+ > Cu2+ > Ni2+ > Fe3+ > Co2+ > Cd2+ > Zn2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号