首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 874 毫秒
1.
CdSe量子点修饰电极电化学发光法测定叶酸   总被引:1,自引:0,他引:1  
制备了水溶性的CdSe量子点,用紫外光谱和荧光光谱对其进行了表征.并将其修饰到金电极的表面,得到了CdSe量子点修饰电极(CdSe/GE),研究了其电化学发光性质.结果表明:在强碱介质中,CdSe/GE对鲁米诺电化学发光具有增敏作用,在此发光体系中加入叶酸后,会产生进一步增强的电化学发光信号,由此建立了电化学发光检测叶酸的新方法.考察了缓冲溶液pH值、鲁米诺的浓度和扫速等条件对电化学发光强度的影响.在优化的实验条件下,叶酸在1×10~(-13)~1.1×10~(-4) mol/L浓度范围内与相对发光强度(ΔI)呈现良好的线性关系,检测限为6.0×10~(-14) mol/L(S/N=3),并用于市售叶酸片剂中叶酸的测定,得到令人满意的实验结果.  相似文献   

2.
CdSe/ZnS QDs enable the optical probing of the biocatalytic oxidation of tyrosine derivatives and of the scission of peptides by thrombin. CdSe/ZnS QDs were modified with tyrosine methyl ester or with a tyrosine-containing peptide. The tyrosine units were reacted with tyrosinase/O2 to yield the respective l-DOPA and quinone derivatives. The luminescence of QDs modified by the enzyme-generated quinone units is quenched. The quinone-functionalized peptide associated with the QDs was cleaved by thrombin, a process that restored the luminescence of the QDs.  相似文献   

3.
Semiconductor nanocrystal quantum dots have been the subject of extensive investigations in different areas of science and technology in the past years. In particular, there are few studies of magic-sized quantum dots (MSQDs), even though they exhibit features such as extremely small size, fluorescence quantum efficiency, molar absorptivity greater than traditional QDs, and highly stable luminescence in HeLa cell cultures, thereby enabling monitoring of biological or chemical processes. The present study investigated the electrochemical behavior of free CdSe/CdS MSQDs using glassy carbon electrode and CdSe/CdS MSQDs immobilized on a gold electrode modified with a self-assembled cyclodextrin monolayer. The MSQDs showed two peaks in aprotic medium. The functionalized film modifier was prepared and characterized by means of cyclic voltammetry and electrochemical impedance spectroscopy using ferricyanide ions as a redox probe. The prepared modified electrode exhibited a stable behavior. The proposed method was successfully applied to encapsulation studies of mangiferin, a natural antioxidant compound, and cyclodextrin associated with the quantum dot, and the response was compared with that of the modified electrode without QD. The fluorescence study revealed that CdSe/CdS quantum dots emit blue light when excited by an optical source of wavelength of 350 nm and a significant increase in fluorescence and absorbance intensity is observed from the core-shell CdSe/CdS MSQDs when quantities of mangiferin are added to the solution containing thiolated cyclodextrin. CdSe/CdS MSQDs are optically and electrochemically sensitive and can be used for the detection and interaction of compounds encapsulated in cyclodextrin.  相似文献   

4.
As-prepared CdSe nanocrystals were ligand exchanged using tert-butylthiol, which yielded stable CdSe nanocrystal inks in the strong donor solvent tetramethylurea. The efficacy of ligand exchange was probed by thermogravimetric analysis (TGA) and FT-IR spectroscopy. By studying sequential exchanges of tetradecylphosphonic acid and then tert-butylthiol, TGA and energy dispersive X-ray spectroscopic evidence clearly demonstrated that the ligand exchange is essentially quantitative. The resulting tert-butylthiol-exchanged CdSe nanocrystals undergo facile thermal ligand expulsion (≤200 °C), which was studied by TGA-mass spectrometry. Mild thermal treatment of tert-butylthiol-exchanged CdSe nanocrystal films was found to induce loss of quantum confinement (as evidenced by UV-vis spectroscopy) and provided for increased electrochemical photocurrent, electron mobility, and film stability. Pyridine-exchanged CdSe nanocrystals were employed as a control system throughout to demonstrate the beneficial attributes of tert-butylthiol exchange; namely, lower organic content, better colloidal stability, improved interparticle coupling, and vastly increased electrochemical photocurrent response upon illumination.  相似文献   

5.
Two series of CdSe quantum dots (QDs) with different diameters are prepared, according to frequently used protocols of the same synthetic procedure. For each sample the photophysical properties and the potentials for the first reduction and oxidation processes in organic solution are determined. The band gap obtained from electrochemical experiments is compared with that determined from the absorption and luminescence spectra. While the optical band gap decreases upon increasing the nanocrystal diameter, as expected on the basis of quantum confinement, the redox potentials and the electrochemical band gap are not monotonously related to the QD size. For both series, the smallest and largest QDs are both easier to oxidize and reduce than mid‐sized QDs. In fact, the latter samples exhibit very broad voltammetric profiles, which suggests that the heterogeneous electron‐transfer processes from/to the electrode are kinetically hindered. Conversely, the electrochemical band gap for the smallest and largest particles of each series is somewhat smaller than the optical band gap. These results indicate that, while the optical band gap depends on the actual electron–hole recombination within the nanocrystal, and therefore follows the size dependence expected from the particle‐in‐a‐box model, the electrochemical processes of these QDs are strongly affected by other factors, such as the presence of surface defects. The investigations suggest that the influence of these defects on the potential values is more important for the smallest and largest QDs of each series, as confirmed by the respective luminescence bands and quantum yields. An interpretation for the size‐dependent evolution of the surface defects in these nanocrystals is proposed based on the mechanism of their formation and growth.  相似文献   

6.
十六烷基胺稳定的CdSe纳米晶体的合成与表征   总被引:2,自引:0,他引:2  
用CdO通过高温化学方法制备了具有高发光特性的CdSe胶体纳米晶.通过改变配体十六烷基胺在反应体系中的含量,合成了3种不同粒径的CdSe纳米晶.利用TEM、XRD和光谱等手段对合成出来的CdSe纳米晶的形貌结构和发光特性进行了表征.结果表明,随着十六烷基胺在反应体系中量的增多,CdSe纳米晶的粒径增大.通过调整十六烷基胺在反应体系中的量可以方便地控制纳米晶的尺寸.  相似文献   

7.
Best of both worlds : Reduction of an organometallic Co precursor on preformed CdSe nanorods yields two distinct semiconducting–magnetic heterostructures (see picture). The selective growth of Co on the tips of CdSe first gives nanosphere–nanorod dimers, which evolve into nanorod–nanorod structures. In the hybrid objects the magnetic properties of Co remain intact, while the luminescence properties of CdSe are affected but not completely quenched.

  相似文献   


8.
Charge transfer mechanisms of several conducting polymers and polymer/CdSe nanocrystal composites (hybrid bulk heterojunction composites) were investigated by means of cyclic voltammetry. Potential application of these composites in hybrid light-emitting diodes was discussed. It was found that charge transfer is observed in most of the composites, used so far, but was relatively slow or incomplete. The PVPy/CdSe nanocrystal composite showed promising results, and is favorable for use in electroluminescent devices.  相似文献   

9.
The 1,2,3,4-thiatriazole-5-thiolate anion (TTT(-)) was found to be a strongly binding ligand for CdSe nanocrystals, quantitatively exchanging various long-chain ligands to yield stable colloidal suspensions in common polar solvents. The TTT(-) ligand thermolyzes at <100 °C to produce thiocyanate in situ, resulting in reduced quantum confinement in nanocrystal films. CdSe(TTT) possesses far higher colloidal stability than CdSe(SCN), and that, together with the facile synthesis of TTT(-), implies that this is a useful ligand for nanocrystal applications as a masked thiocyanate.  相似文献   

10.
A series of nonstoichiometric CdSe clusters with lowest energy electronic absorptions between 409 - 420 nm has been prepared from cadmium 1-naphthoate, 2-naphthoate, 4-thiomethyl-1-naphthaote, and 1-naphthalene thiolate complexes and diphenylphosphine selenide (DPPSe). Pair distribution function analysis of X-ray diffraction data, ligand exchange experiments, and NMR molecular weight analyses suggest the nanocrystal core changes minimally among these clusters despite significant changes to their absorption and luminescence spectra. Photoluminescence excitation spectra obtained at 77 K reveal an energy transfer process between the surface-trapped excited state and the naphthalene-containing ligands that leads to ligand phosphorescence. A Dexter energy transfer mechanism is proposed to explain the observation of ligand phosphorescence on excitation of the cluster. These compounds demonstrate that cluster absorption and trap luminescence can be controlled with surface coordination chemistry.  相似文献   

11.
The photophysical properties of CdSe and ZnS(CdSe) semiconductor quantum dots in nonpolar and aqueous solutions were examined with steady-state (absorption and emission) and time-resolved (time-correlated single-photon-counting) spectroscopy. The CdSe structures were prepared from a single CdSe synthesis, a portion of which were ZnS-capped, thus any differences observed in the spectral behavior between the two preparations were due to changes in the molecular shell. Quantum dots in nonpolar solvents were surrounded with a trioctylphosphine oxide (TOPO) coating from the initial synthesis solution. ZnS-capped CdSe were initially brighter than bare uncapped CdSe and had overall faster emission decays. The dynamics did not vary when the solvent was changed from hexane to dichloromethane; however, replacement of the TOPO cap by pyridine affected CdSe but not ZnS(CdSe). CdSe was then solubilized in water with mercapto-acetic acid or dihydrolipoic acid, whereas ZnS(CdSe) could be solubilized only with dihydrolipoic acid. Both solubilization agents quenched the nanocrystal emission, though with CdSe the quenching was nearly complete. Additional quenching of the remaining emission was observed when the redox-active molecule adenine was conjugated to the water-soluble CdSe but was not seen with ZnS(CdSe). The emission of aqueous CdSe could be enhanced under prolonged exposure to room light and resulted in a substantial increase of the emission lifetimes; however, the enhancement occurred concurrently with precipitation of the nanocrystals, which was possibly caused by photocatalytic destruction of the mercaptoacetic acid coating. These results are the first presented on aqueous CdSe quantum dot structures and are presented in the context of designing better, more stable biological probes.  相似文献   

12.
The surface ligands, generation-3 (G3) dendrons, on each semiconductor nanocrystal were globally cross-linked through ring-closing metathesis (RCM). The global cross-linking of the dendron ligands sealed each nanocrystal in a dendron box, which yielded box-nanocrystals. Although the dendron ligands coated CdSe nanocrystals (CdSe dendron-nanocrystals) were already quite stable, the stability of CdSe box-nanocrystals against chemical, photochemical, and thermal treatments were dramatically improved in comparison to that of the original dendron-nanocrystals. Furthermore, the box structure of the ligands monolayer coupled with the stable inorganic CdSe/CdS core/shell nanocrystals resulted in a class of extremely stable nanocrystal/ligands complexes. The band edge photoluminescence of the core/shell dendron-nanocrystals and box-nanocrystals were partially remained, and could be further brightened through controlled chemical oxidation or photooxidation. Practically, the stability of the box-nanocrystals is sufficient for most fundamental studies and technical applications. The box-nanocrystals may represent a general solution for the commonly encountered instability for many types of colloidal nanocrystals. The size distribution of the empty dendron boxes formed by the dissolution of the inorganic nanocrystals in concentrated HCl was very narrow. The empty boxes as new types of polymer capsules are soluble in solution, mesoporous, and with a very thin but stable peripheral. Those nanometer-sized cavities should be of interest for many purposes in the field of solution host-guest chemistry.  相似文献   

13.
Here we demonstrate the aqueous synthesis of colloidal nanocrystal heterostructures consisting of the CdTe core encapsulated by CdS/ZnS or CdSe/ZnS shells using glutathione (GSH), a tripeptide, as the capping ligand. The inner CdTe/CdS and CdTe/CdSe heterostructures have type-I, quasi-type-II, or type-II band offsets depending on the core size and shell thickness, and the outer CdS/ZnS and CdSe/ZnS structures have type-I band offsets. The emission maxima of the assembled heterostructures were found to be dependent on the CdTe core size, with a wider range of spectral tunability observed for the smaller cores. Because of encapsulation effects, the formation of successive shells resulted in a considerable increase in the photoluminescence quantum yield; however, identifying optimal shell thicknesses was required to achieve the maximum quantum yield. Photoluminescence lifetime measurements revealed that the decrease in the quantum yield of thick-shell nanocrystals was caused by a substantial decrease in the radiative rate constant. By tuning the diameter of the core and the thickness of each shell, a broad range of high quantum yield (up to 45%) nanocrystal heterostructures with emission ranging from visible to NIR wavelengths (500-730 nm) were obtained. This versatile route to engineering the optical properties of nanocrystal heterostructures will provide new opportunities for applications in bioimaging and biolabeling.  相似文献   

14.
We described a facile method for preparing CdSe/CdS/ZnS core/shell/shell nanocrystals from air-stable single source precursors.The single source precursors of cadmium ethylxanthate and zinc ethylxanthate were used to form CdS and ZnS shell layers in octadecene.An efficient modification of CdSe/CdS/ZnS nanocrystals was subsequently performed to obtain hydrophilic nanocrystal fluorophores with good stability in a pH range of 1.6-10.  相似文献   

15.
We have prepared high-quality assemblies of monodisperse CdSe quantum dots and employed a combination of electrochemical gating and electrical and optical techniques to study orbital occupation in these quantum-dot solids. Electron occupation in localized states is important in some cases and can be unambiguously distinguished from occupation of the nanocrystal eigenstates. In addition, all excitonic transitions show a red-shift in the transition energy, due to the presence of electron charge. We infer that the energy of the S electrons is determined by the quantum-confinement energy and by Coulomb repulsions of the S electron with all other electrons in the assembly. By using a simple electron-repulsion model, we explain observed differences in the electron-addition energy for different samples, the broadening of the electron occupation as a function of electrochemical potential, and the strong dependence of the electron-addition energy on nanocrystal diameter.  相似文献   

16.
Indiscriminate adsorption of nanoparticles (NPs) significantly complicates the preparation of mesoscale NP patterns considered as enabling technology for many devices and processes. Instead of selected chemical functionalization of the substrate surface prior to the assembly of nanocolloids, the required optical properties - in our case, high quantum yield luminescence - are imparted to the layer-by-layer assembled films by spatially selected photoactivation. The films are made by sequential adsorption of a positively charged polyelectrolyte and a negatively charged CdSe/CdS aqueous dispersion with an initial quantum yield of 0.5-2%. The photoactivation process takes place in the presence of oxygen and may be accompanied by photoetching. A 50-500-fold increase in the luminescence intensity of CdSe/CdS citrate-stabilized particles (quantum yield 25-45%) after visible light illumination provides excellent pattern contrast. Micron scale luminescence patterns were produced from NPs of various CdSe core diameters with red, yellow, and green emission. It was also demonstrated that different emission colors such as orange and green can be combined in one image by taking advantage of spatially selective photoetching. The presented optical patterning technique significantly simplifies the preparation of luminescence patterns as compared to conventional methods. The high signal-to-noise ratio associated with it is essential for optical devices, information processing, and biophotonics. The most immediate use of this approach is expected in cryptography and cell monitoring.  相似文献   

17.
The photoluminescence (PL) of CdSe quantum dots (QD) in aqueous media has been studied in the presence of gold nanoparticles (NP) with different shapes. The steady state PL intensity of CdSe QD (1.5-2 nm in size) is quenched in the presence of gold NP. Picosecond bleach recovery and nanosecond time-resolved luminescence measurements show a faster bleach recovery and decrease in the lifetime of the emitting states of CdSe QD in the presence of quenchers. Surfactant-capped gold nanorods (NR) with aspect ratio of 3 and surfactant-capped and citrate-capped nanospheres (NS) of 12 nm diameter were used as quenchers in order to study the effect of shape and surface charge on the quenching rates. The Stern-Volmer kinetics model is used to examine the observed quenching behavior as a function of the quencher concentration. It was found that the quenching rate of NR is more than 1000 times stronger than that of NS with the same capping material. We also found that the quenching rate decreases as the length of the NR decreases, although the overlap between the CdSe emission and the NR absorption increases. This suggests that the quenching is a result of electron transfer rather than long-range (Forster-type) energy transfer processes. The quenching was attributed to the transfer of electron with energies below the Fermi level of gold to the trap holes of CdSe QD. The observed large difference between NR and NS quenching efficiencies was attributed to the presence of the [110] facets only in the NR, which have higher surface energy.  相似文献   

18.
For an optimum charge/energy transfer performance of hybrid organic–inorganic colloidal nanocrystals for applications such as photonic devices and solar cells, the determining factors are the distance between the nanocrystal and polymer which greatly depends upon nanocrystal size/nanocrystal ligands. Short chain ligands are preferred to ensure a close contact between the donor and acceptor as a result of the tunnelling probability of the charges and the insulating nature of long alkyl chain molecules. Short distances increase the probability for tunnelling to occur as compared to long distances induced by long alkyl chains of bulky ligands which inhibit tunnelling altogether. The ligands on the as-synthesized nanocrystals can be exchanged for various other ligands to achieve desirable charge/energy transfer properties depending on the bond strength of the ligand on the nanocrystal compared to the replacement ligand. In this work, the constraints involved in post-synthesis ligand exchange process have been evaluated, and these factors have been tuned via wet chemistry to tailor the hybrid material properties via appropriate selection of the nanocrystal capping ligands. It has been found that both oleic acid and oleylamine (OLA)-capped cadmium selenide (CdSe) quantum dots (QDs) as compared with trioctylphosphine oxide (TOPO)-passivated CdSe QDs are of high quality, and they provide better steric stability against coagulation, homogeneity, and photostability to their respective polymer:CdSe nanocomposites. CdSe QDs particularly with OLA capping have relatively smaller surface energies, and thus, lesser quenching capabilities show dominance of photoinduced Forster energy transfer between donors (polymer) and acceptors (CdSe nanocrystals) as compared to charge transfer mechanism as observed in polymer:CdSe (TOPO) composites. It is conjectured that size quantization effects, stereochemical compatibility of ligands (TOPO, oleic acid, and oleyl amine), and polymer MEH-PPV stability greatly influence the photophysics and photochemistry of hybrid polymer–semiconductor nanocomposites.  相似文献   

19.
High-quality Zn(x)Cd(1-x)Se nanocrystals have been successfully prepared at high temperature by incorporating stoichiometric amounts of Zn and Se into pre-prepared CdSe nanocrystals. With increasing Zn content, a composition-tunable emission across most of the visible spectrum has been demonstrated by a systematic blue-shift in emission wavelength. The photoluminescence (PL) properties for the obtained Zn(x)Cd(1-x)Se nanocrystals (PL efficiency of 70-85%, fwhm = 22-30 nm) are comparable to those for the best reported CdSe-based QDs. In particular, they also have good PL properties in the blue spectral range. Moreover, the alloy nanocrystals can retain their high luminescence (PL efficiency of over 40%) when dispersed in aqueous solutions and maintain a symmetric peak shape and spectral position under rigorous experimental conditions. A rapid alloying process was observed at a temperature higher than "alloying point". The mechanism of the high luminescence efficiency and stability of Zn(x)Cd(1-x)Se nanocrystals is explored.  相似文献   

20.
以巯基乙醇为修饰剂,在水溶液中合成了稳定的CdSe/CdS纳米晶,应用单因素法和多目标单纯形法探索合成条件。通过透射电镜观察所合成的纳米晶的形貌和大小,用紫外-可见吸收光谱和荧光光谱对其光学特性进行了表征。并且以L-色氨酸荧光量子产率0.14为标准,测量了合成的CdSe/CdS纳米晶的荧光量子产率为0.37。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号