首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have investigated a novel technique for the preparation of nano-sized Pt metals on Ti-containing mesoporous silica (TMS) thin film by photo-assisted deposition (PAD). The transparent TMS thin film was prepared on a quartz plate through sol—gel/spin coating. XRD, UV-Vis and Ti K-edge XAFS measurements revealed the formation of isolated Ti oxide species with a tetrahedral-coordination geometry in the silica framework. Deposition of Pt metal precursor on TMS thin film under UV-light irradiation, followed by reduction with molecular hydrogen, afforded a transparent thin film (Pt/TMS). The formation of highly dispersed nano-sized Pt metals having narrow size distributions was determined by Pd LIII-edge XANES and TEM analysis. The TMS and Pt/TMS thin films have been demonstrated to exhibit a strong hydrophilic property, even before UV irradiation, compared to the common mesoporous silica and TiO2 thin films. After UV-light irradiation, the contact angle of water droplet on the TMS and Pt/TMS thin films became extremely lower, indicating the appearance of the photo-induced super-hydrophilic property.  相似文献   

2.
The unique physicochemical properties of ordered mesoporous transition metal oxides have attracted more and more attention. The hydrolysis process of metal oxide precursors is difficult to control, and it is difficult to synthesize an ordered mesoporous transition metal oxide material using the conventional template method. Ordered mesoporous Pt/Fe3O4–CeO2 heterostructure gel materials with excellent catalytic properties were successfully prepared using aerogel technology and the chemical deposition method. The Pt/Fe3O4–CeO2 material was an n–n combined heterostructured semiconductor material which consisted of a magnetic Fe3O4 layer, a CeO2 core and Pt noble metal doped nanoparticles. A layer of Fe3O4 thin film was formed on the surface of ordered mesoporous Pt/CeO2 gel matrix material using the chemical deposition method. The intriguing heterostructural features could facilitate reactant diffusion and exposure of active sites which could enhance synergistic catalytic effects between the Pt nanoparticles and CeO2 nanoparticles. Compared with Pt/CeO2, the prepared Pt/Fe3O4–CeO2 showed enhanced catalytic activity in the reduction of 4-nitrophenol at room temperature. The catalytic activity of the heterostructure catalysts was systematically investigated using 4-nitrophenol reduction as a model reaction. The results showed that the Pt (0.1%)/Fe3O4–CeO2 sample exhibited the optimal catalytic performance toward catalytic reduction of 4-nitrophenol to 4-aminophenol. The study provided a method for the preparation of heterostructure nanocatalysts with high efficiency, which would be effective for application in various catalytic reactions.  相似文献   

3.
Ordered mesoporous titania thin films were synthesized by evaporation induced self‐assembly process in the presence of Pluronic block copolymers P123 (EO20‐PO70‐EO20). The influence of several experimental parameters, including aging humidity, aging temperature, substrate properties and methods for organic templates removal, on the mesostructure of titania thin films was investigated in details. The mesoporous titania thin film supported Pt catalyst was prepared, and its methanol catalytic combustion performance was studied. The results showed that mesoporous titania thin film is an active support for catalyst. Mesoporous titania thin film supported platinum catalysts yields 70% methanol conversion at room temperature and 100% conversion at 100 °C. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
氮掺杂有序介孔碳材料不仅具有高的比表面积、大的孔容和均一可调的孔径等优点,其骨架中丰富的氮原子还可以对材料的物理化学性质、配位金属电荷密度等进行调控,是一类优异的催化剂载体.本文利用软模板(嵌段共聚物F127为模板),以间氨基苯酚为碳源和氮前体,制备出较高含氮量(9.58 wt%)和比表面积(417 m2/g),以及规则孔径分布的介孔碳材料.结果表明,制备的材料具有三维立方相结构.以该碳材料作为载体,使用传统浸渍氢气还原的策略负载纳米铂颗粒.发现氮掺杂的载体能够有效控制金属纳米颗粒的尺寸,可实现超小尺寸Pt纳米颗粒的有效负载(1.0±0.5 nm),且纳米颗粒均匀分布于介孔碳材料的孔道中.相比而言,使用相同负载方法的情况下,以不掺氮的介孔碳材料为载体,纳米粒子的尺寸较难控制(4.4±1.7 nm)且会发生孔道外颗粒聚集的情况.研究表明,骨架中的氮原子与金属间弱的相互作用对纳米粒子有稳定作用.这对制备超小尺寸的金属纳米粒子催化剂具有一定的指导意义.此外,由于纳米粒子的尺寸将大大影响催化剂活性中心的暴露程度,进而影响催化剂活性.因此,我们以硝基苯类化合物的氢化反应来评价该催化剂的催化性能.在室温和1 MPa H2的温和条件下,氮掺杂的介孔碳负载催化剂表现出了优异的催化性能.反应0.5 h,对氯硝基苯可完全转化,且选择性高达99%.相比而言,商业化的Pt/C催化剂上反应的转化率和选择性分别为89%和90%.其它传统催化剂的比较,如Pt/SiO2,Pt/TiO2,同样表明,氮掺杂介孔碳负载的催化剂具有更优异的催化性能.在相同反应条件下,Pt/SiO2催化剂只能得到46%的转化率和93%的选择性,而Pt/TiO2催化剂虽然能够实现完全转化,但选择性也仅为91%.由此可见,氮掺杂的负载催化剂可大大提高反应活性和选择性,能有效抑制脱氯现象的发生.这种高的催化性能可能与催化剂的介孔结构、氮功能化载体以及超小尺寸的Pt纳米粒子的稳定有关.由于氮原子和介孔孔道的限域作用,氮掺杂介孔碳负载的催化剂也具有良好的催化稳定性,循环使用10次后,催化活性和选择性几乎没有下降.结果表明,循环使用后的催化剂金属粒子尺寸变化不大,进一步表明氮掺杂介孔碳载体对金属纳米颗粒的稳定作用.  相似文献   

5.
PbS electrode with high catalytic activity to Sn 2? reduction certificated by the measurements of electrochemical impedance spectroscopy and cyclic voltammetry was prepared by a simple method. The high catalytic activity makes it be a low-cost alternative counter electrode to platinum (Pt) to be used in quantum dots-sensitized solar cells (QDSSCs) based on polysulfide electrolyte. The photovoltaic performance enhancement of the quantum dots (QDs)-sensitized semiconductor thin films due to the PbS counter electrode was evaluated by fabricating QDSSCs based on CdSe QDs-sensitized ZnO (SnO2) thin film. CdSe QDs-sensitized ZnO thin film has the lower internal total series resistance and electron transmission time, the higher electron lifetime and electron collection efficiency than the CdSe QDs-sensitized SnO2 thin film. Replacing the Pt counter electrode with the PbS counter electrode leads to more improvement on the short circuit photocurrent density for QDSSC based on the ZnO thin film than the SnO2 thin film. Therefore, the process to limit the photovoltaic performance of CdSe QDs-sensitized solar cell and the possible way to improve the photovoltaic performance were analyzed.  相似文献   

6.
陈志坚  李晓红  李灿 《催化学报》2011,32(1):155-161
以介孔材料SBA-15、经或未经Al2O3修饰的具有三维立方孔道结构的SiO2为载体,制备了负载型Pt催化剂,并用于催化α-酮酸酯底物2-氧代-4-苯基-丁酸乙酯(EOPB)和丙酮酸乙酯(Etpy)的不对称氢化反应中.结果表明,当SBA-15孔径由6.2,7.6和9.2nm依次增加时,EOPB不对称氢化的活性和手性选择...  相似文献   

7.
Ceria-based catalytic materials are known for their crystal-face-dependent catalytic properties. To obtain a molecular-level understanding of their surface chemistry, controlled synthesis of ceria with well-defined surface structures is required. We have thus studied the growth of CeOx nanostructures (NSs) and thin films on Pt(111). The strong metal-oxide interaction has often been invoked to explain catalytic processes over the Pt/CeOx catalysts. However, the Pt-CeOx interaction has not been understood at the atomic level. We show here that the interfacial interaction between Pt and ceria could indeed affect the surface structures of ceria, which could subsequently determine their catalytic chemistry. While ceria on Pt(111) typically exposes the CeO2(111) surface, we found that the structures of ceria layers with a thickness of three layers or less are highly dynamic and dependent on the annealing temperatures, owing to the electronic interaction between Pt and CeOx. A two-step kinetically limited growth procedure was used to prepare the ceria film that fully covers the Pt(111) substrate. For a ceria film of ~3–4 monolayer (ML) thickness on Pt(111), annealing in ultrahigh vacuum (UHV) at 1000 K results in a surface of CeO2 (100), stabilized by a c-Ce2O3(100) buffer layer. Further oxidation at 900 K transforms the surface of the CeO2(100) thin film into a hexagonal CeO2(111) surface.  相似文献   

8.
以介孔树脂材料FDU-14和介孔碳材料CMK-3为载体制备了两种负载型铂催化剂, 用N2气吸附、X射线衍射及CO化学吸附等手段对这两种催化剂进行了表征, 并将这两种不同的负载型铂催化剂在丙酮酸乙酯不对称氢化反应中的催化性能及其铂流失率与商品化Pt/Al2O3催化剂进行了比较. 研究结果表明, 尽管Pt/Al2O3催化剂的初始活性和光学选择性均较高, 然而相同反应条件下乙酸溶剂中Pt/FDU-14和Pt/CMK-3催化剂的铂流失率比Pt/Al2O3催化剂的低. 通过对催化剂进行CO吸附原位傅里叶变换红外漫反射光谱(DRIFTS)表征, 从载体的不同表面电子性质角度解释了不同载体负载的铂催化剂在丙酮酸乙酯不对称氢化反应中的活性和铂流失率的差异.  相似文献   

9.
A Pt–CeO2 composite thin film was prepared on a glassy carbon electrode by one-step electrochemical deposition technique. The film was constructed of Pt particles well dispersed and embedded in a porous CeO2 substrate. The prepared Pt–CeO2/GC electrode showed a better catalytic performance toward methanol electrooxidation compared with the bulk Pt electrode.  相似文献   

10.
The synthesis of Pt thin films with a controlled nanoscopic architecture that can support surface enhanced Raman scattering (SERS) is reported. The syntheses are achieved by replicating the pores of a type of mesoporous silica thin film whose pore structure could be described as a regular array of vertical channels of ~9 nm in diameter and their interconnections, forming a 3‐dimensional pore network. Electrochemical deposition into the pores followed by the removal of the templates produced Pt films composed of arrays of vertically standing Pt nanorods with narrow gaps between them. The 3‐dimensional nanostructure increases the surface area and enables the Pt film to absorb visible light. SERS studies of rhodamine 6G and benzenethiol on such Pt films as substrates reveals that the control of the nanostructure is critical for the SERS effect.  相似文献   

11.
We have developed a highly stable and magnetically recyclable nanocatalyst system for alkene hydrogenation. The materials are composed of mesoporous silica spheres (MSS) embedded with FeCo/graphitic shell (FeCo/GC) magnetic nanoparticles and Pt nanocatalysts (Pt‐FeCo/GC@MSS). The Pt‐FeCo/GC@MSS have superparamagnetism at room temperature and show type IV isotherm typical for mesoporous silica, thereby ensuring a large enough inner space (surface area of 235.3 m2 g?1, pore volume of 0.165 cm3 g?1, and pore diameter of 2.8 nm) to undergo catalytic reactions. We have shown that the Pt‐FeCo/GC@MSS system readily converts cyclohexene into cyclohexane, which is the only product isolated and Pt‐FeCo/GC@MSS can be seperated very quickly by an external magnetic field after the catalytic reaction is finished. We have demonstrated that the recycled Pt‐FeCo/GC@MSS can be reused further for the same hydrogenation reaction at least four times without loss in the initial catalytic activity.  相似文献   

12.
以嵌段共聚物P123为模板制备介孔氧化硅SBA-15, 并以此SBA-15为模板, 以蔗糖为碳源在不同的温度下(600-900 °C)制备介孔碳CMK-3. 采用浸渍还原法, 以硼氢化钠为还原剂, 制备介孔碳载Pt电催化剂, 即20% (w) Pt/CMK-3. 利用循环伏安法(CV)、计时电流法等测试电催化剂对甲醇的催化氧化性能及稳定性. 预吸附单层CO溶出伏安法研究测试催化剂抗CO中毒能力. 结果表明在烧制温度为900 °C时制备的介孔碳载Pt催化剂具有最好的催化性能和稳定性, 而在烧制温度为700 °C时制备的介孔碳载Pt催化剂对CO有较低的溶出电位.  相似文献   

13.
The catalytic behavior of stainless steel (SS) electrode modified by a thin film of polyaniline (PANI) containing platinum particles was studied for electrooxidation of methanol and compared with a platinated Pt/PANI electrode in acidic aqueous solution. Cyclic voltammetry (CV), chronoamperometry, CO stripping techniques were used to investigate electrochemical properties and electrocatalytic activity of SS/PANI/Pt and Pt/PANI/Pt electrodes. The morphology and particle size of Pt catalysts were characterized by Transmission Electron Microscopy (TEM) measurement. The effects of various parameters such as thickness of polymer film, medium temperature and stability of the modified electrodes on methanol oxidation were also investigated. The results indicated that the modified SS electrode exhibited a considerably high electrocatalytic activity on the methanol oxidation as well as the modified Pt electrode.  相似文献   

14.
Pt‐based nanomaterials play important roles in the catalytic process toward oxygen reduction reaction (ORR). Rationally regulating the composition and morphology of the catalysts could enhance the catalytic performance effectively. In this work, an effective method is presented to synthesize Pd@ mesoporous PtRu nanorattles (Pd@mPtRu NRs) containing a Pd core and a mesoporous PtRu shell. Owing to the unique structure and PtRu alloy composition, the prepared Pd@mPtRu NRs exhibit an enhanced catalytic performance and durability toward ORR relative to mesoporous PtRu hollow nanoparticles (mPtRu HNs) and commercial Pt/C. The proposed approach may provide a general way to synthesize Pt‐based yolk‐shell structures with different compositions.  相似文献   

15.
A novel molecularly hybridized polyethylene/silica composite thin film was obtained by the gas‐phase polymerization of ethylene with a titanocene‐mounted mesoporous silica layer on a mica plate with mesoscopic pores arranged on the film surface. However, the use of titanocene‐mounted hexagonal domains of mesoporous silica on a glass plate for the gas‐phase polymerization of ethylene resulted in the formation of an islanded polyethylene/silica hybridized material. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4821–4825, 2000  相似文献   

16.
Pt µdisc electrodes have been modified by mesoporous organosilica thin films by electrochemically assisted self‐assembly (EASA) of mercaptopropyltrimethoxysilane (MPTMS), tetraethoxysilane (TEOS), and the surfactant cetyltrimethylammonium bromide (CTAB). The EASA process involves the generation of hydroxide ions at the electrode/solution interface, upon the application of a cathodic current density, leading to TEOS and MPTMS polycondensation around the CTAB template and concomitant growing of a thiol‐functionalized mesoporous film onto the electrode surface. The experimental conditions (current density, deposition time, silane concentration and molar ratio between surfactant template and silane) were optimised to form a thin and permeable film likely to be used in preconcentration electroanalysis. The morphology of the film electrodes were characterised by scanning electron microscopy. The permeability properties of the modified Pt µdisc electrodes have been evidenced by cyclic voltammetry using Ru(NH3)63+ as a redox probe. The best parameters identified for the film preparation are a current density of ? 8 mA cm?2 applied for 15 s in a solution containing 110 mM of hydrolysed silane precursors and 70.4 mM of CTAB. Pt µdisc electrodes modified in these conditions were used for the open‐circuit preconcentration of Hg(II) species prior to their detection by anodic stripping voltammetry in a mercury‐free solution. In the optimized conditions, a sensitivity of 14.3 mA cm?2 µM?1 was obtained for the 0.02–0.08 µM concentration range. The analytical performance of such organosilica films could decay by up to two orders of magnitude for the materials prepared in conditions other than the optimized ones, highlighting the need for a fine control of the deposition parameters to elaborate sensors based on such modified ultramicroelectrodes.  相似文献   

17.
刘惠平  卢冠忠 《无机化学学报》2011,27(10):2045-2052
以"乙酸乙酯(EA)-偏铝酸钠-水"体系在室温下合成了纳米膜组装介孔Al2O3。研究发现:合成反应时间、静置前搅拌时间、NaAlO2用量、EA用量及反应温度等对合成产物的形貌有影响;另外,与用商品γ-Al2O3制备的Pt/γ-Al2O3催化剂相比,纳米膜组装介孔Al2O3制备的Pt/Al2O3催化剂含有部分易被还原的PtOx物种。在硝基苯催化加氢反应中,用合成Al2O3为载体制备的Pt/Al2O3催化剂,比用商品γ-Al2O3制备的Pt/γ-Al2O3催化剂具有更好的催化活性。  相似文献   

18.
The influence of the iridium oxide thin film on the electrocatalytic properties of platinum nanoparticles was investigated using the electro-oxidation of methanol and CO as a probe. The presence of the IrO(2) thin film leads to the homogeneous dispersion of Pt nanoparticles. For comparison, polycrystalline platinum and Pt nanoparticles dispersed on a Ti substrate in the absence of an IrO(2) layer (Ti/Pt) were also investigated in this study. Inverted and enhanced CO bipolar peaks were observed using an in situ electrochemical Fourier transform infrared technique during the methanol oxidation on the Pt nanoparticles dispersed on a Ti substrate. Electrochemical impedance studies showed that the charge transfer resistance was significantly lower for the Ti/IrO(2)/Pt electrode compared with that of the massive Pt and Ti/Pt nanoparticles. The presence of the IrO(2) thin film not only greatly increases the active surface area but also promotes CO oxidation at a much lower electrode potential, thus, significantly enhancing the electrocatalytic activity of Pt nanoparticles toward methanol electro-oxidation.  相似文献   

19.
A novel approach to assemble multilayer films of Pt nanoparticle/multiwalled carbon nanotube (MWNTs) composites on Au substrate has been developed for the purpose of improving the methanol oxidation efficiency by providing high catalytic surface area. MWNTs were firstly functionalized with 4‐mercaptobenzene and then assembled on an Au substrate electrode. Pt nanoparticles were fabricated and attached to the surface of the functionalized MWNTs subsequently. Thus a layer of Pt/MWNT composites were assembled on the Au substrate electrode. Repeating above process can assemble different layers of film of Pt/MWNTs composites on the Au electrode. Cyclic voltammetry shows that the Au electrode modified with two layers of film of Pt/MWNT composites exhibits high catalytic ability and long‐term stability for methanol oxidation. The layer‐by‐layer self‐assembly technique provides an efficient strategy to construct complex nanostructure for improving the methanol oxidation efficiency by providing high catalytic surface area.  相似文献   

20.
In less than one minute the catalytic activity and selectivity of a single catalyst was measured in combinatorial libraries of ternary Rh‐Pd‐Pt‐Cu alloys. Only slightly more than two hours were needed to complete a library with 136 elements. The elements of the libraries (ca. 2–4 μg of material) are contained in a two‐dimensional array synthesized by a thin‐film technique. The analysis was performed by a scanning mass spectrometer (see picture).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号