首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 97 毫秒
1.
This paper presents the numerical study of internal free convection of Al2O3 water nanofluid in vertical annuli. Vertical walls are maintained at constant temperatures and horizontal walls are adiabatic. Results are validated by experimental data. Effect of nanofluids on natural convection is investigated as a function of geometrical and physical parameters and particle fractions for aspect ratio of 1 ≤ H/L ≤ 5, Grashof number of 103 ≤ Gr ≤ 105 and concentration of 0 ≤ ϕ ≤ 0.06. More than 330 different numerical cases are investigated to develop a new correlation for the Nusselt number. This correlation is presented as a function of Nusselt number of base fluid and particle fraction which is a linear decreasing function of particle fraction. The developed correlation for annuli is also valid for the natural convection of Al2O3 water nanofluid in a square cavity. Furthermore, the effect of the viscosity and conductivity models on the Nusselt number of nanofluids in cylindrical cavities are discussed.  相似文献   

2.
This work is focused on numerical simulations of natural convection heat transfer in Al2O3-water nanofluids using computational fluid dynamics approach. Fluent v6.3 is used to simulate water based nanofluid considering it as a single phase. Thermo-physical properties of the nanofluids are considered in terms of volume fraction and size of nanoparticles, size of base fluid molecule and temperature. The numerical values of effective thermal conductivity have also been compared with the experimental values available in the literature. The numerical result simulated shows decrease in heat transfer with increase in particle volume fraction. Computed result shows similar trend in increase of Nusselt number with Relayigh number as depicted by experimental results. Streamlines and temperature profiles are plotted to demonstrate the effect.  相似文献   

3.
A numerical study of laminar forced convective flows of three different nanofluids through a horizontal circular tube with a constant heat flux condition has been performed. The effect of Al2O3 volume concentration 0 ≤ φ ≤ 0.09 in the pure water, water-ethylene glycol mixture and pure ethylene glycol as base fluids, and Reynolds number of 100 ≤ Re ≤ 2,000 for different power inputs in the range of 10 ≤ Q(W) ≤ 400 have been investigated. In this study, all of the nanofluid properties are temperature and nanoparticle volume concentration dependent. The governing equations have been solved using finite volume approach with the SIMPLER algorithm. The results indicate an increase in the averaged heat transfer coefficient with increasing the mass of ethylene glycol in the water base fluid, solid concentration and Reynolds number. From the investigations it can be inferred that, the pressure drop and pumping power in the nanofluids at low solid volumetric concentration (φ < 3%) is approximately the same as in the pure base fluid in the various Reynolds numbers, but the higher solid nanoparticle volume concentration causes a penalty drop in the pressure. Moreover, this study shows it is possible to achieve a higher heat transfer rate with lower wall shear stress with the use of proper nanofluids.  相似文献   

4.
This paper presents an analytical and numerical study of natural convection of nanofluids contained in a rectangular enclosure subject to uniform heat flux along the vertical sides. Governing parameters of the problem under study are the thermal Rayleigh number Ra, the Prandtl number Pr, the aspect ratio of the cavity A and the solid volume fraction of nanoparticles, Φ. Three types of nanoparticles are taken into consideration: Cu, Al2O3 and TiO2. Various models are used for calculating the effective viscosity and thermal conductivity of nanofluids. In the first part of the analytical study, a scale analysis is made for the boundary layer regime situation. In the second part, an analytical solution based on the parallel flow approximation is reported for tall enclosures (A ≫ 1). In the boundary layer regime a good agreement is obtained between the predictions of the scale analysis and those of the analytical solution. Solutions for the flow fields, temperature distributions and Nusselt numbers are obtained explicitly in terms of the governing parameters of the problem. A numerical study of the same phenomenon, obtained by solving the complete system of the governing equations, is also conducted. A good agreement is found between the analytical predictions and the numerical simulations.  相似文献   

5.
Thermal conductivity of α-Al2O3 was measured using hot wire method. α-Al2O3 (20 nm in size) was synthesized by microwave method for which, the results were compared with commercially available γ-Al2O3. Thermal conductivity of nanofluids was investigated considering, it is dependency on Al2O3 phase. It was observed that by adding 3 wt% of nano γ-Al2O3 and α-Al2O3 to the engine oil, thermal conductivity increases by 37 and 31%, respectively. The corresponding viscosity increase for the same amount of nano γ-Al2O3 and α-Al2O3 were 36 and 38%, respectively. It was concluded that the differences in thermal conductivity originate from higher specific surface area of γ-Al2O3 compared to the α-Al2O3 which is the result of porosity difference, obtained during the synthesis process.  相似文献   

6.
The aim of this paper is to study the development of mixed convection flow near the stagnation point region over an exponentially stretching/shrinking sheet in nanofluids. The external flow, stretching velocity and wall temperature are assumed to vary as prescribed exponential functions. Using the local similarity method, it has been shown that dual solutions of velocity and temperature exist for certain values of suction/injection, mixed convection, nanoparticle volume fraction and stretching/shrinking parameters. The transformed non-linear ordinary differential equations along with the boundary conditions form a two point boundary value problem and are solved using Shooting method, by converting into an initial value problem. In this method, the system of equations is converted into a set of first order system which is solved by fourth-order Runge–Kutta method. Three different types of nanoparticles, namely copper (Cu), aluminum oxide (Al2O3) and titanium oxide (TiO2) are considered by using water-based fluid with Prandtl number Pr = 6.2. It is also found that the skin friction coefficient and the heat transfer rate at the surface are highest for Copper–water nanofluids as compared to Al2O3. The effect of the solid volume fraction parameter φ of the nanofluids on the heat transfer characteristics is also investigated. The results indicate that dual solutions exist only for shrinking sheet. The effects of various parameters on the velocity and temperature profiles are also presented here.  相似文献   

7.
The injection of CO2 in exploited natural gas reservoirs as a means to reduce greenhouse gas (GHG) emissions is highly attractive as it takes place in well-known geological structures of proven integrity with respect to gas leakage. The injection of a reactive gas such as CO2 puts emphasis on the possible alteration of reservoir and caprock formations and especially of the wells’ cement sheaths induced by the modification of chemical equilibria. Such studies are important for injectivity assurance, wellbore integrity, and risk assessment required for CO2 sequestration site qualification. Within a R&D project funded by Eni, we set up a numerical model to investigate the rock–cement alterations driven by the injection of CO2 into a depleted sweet natural gas pool. The simulations are performed with the TOUGHREACT simulator (Xu et al. in Comput Geosci 32:145–165, 2006) coupled to the TMGAS EOS module (Battistelli and Marcolini in Int J Greenh Gas Control 3:481–493, 2009) developed for the TOUGH2 family of reservoir simulators (Pruess et al. in TOUGH2 User’s Guide, Version 2.0, 1999). On the basis of field data, the system is considered in isothermal (50°C) and isobaric (128.5 bar) conditions. The effects of the evolving reservoir gas composition are taken into account before, during, and after CO2 injection. Fully water-saturated conditions were assumed for the cement sheath and caprock domains. The gas phase does not flow by advection from the reservoir into the interacting domains so that molecular diffusion in the aqueous phase is the most important process controlling the mass transport occurring in the system under study.  相似文献   

8.
The electrorheological properties (ER) of some fluids containing particles change extensively under the external electrical field. This phenomenon is applicable in many industries and equipments, such as clutches and motor driven rotor, which would transfer the spin to a drive shaft through a thin layer of electrorheological fluid. In this investigation, the effects of external electrical field on ER properties of non-Newtonian fluids (silicon oil) with the addition of SnO2 and Y2O3 nanoparticles were studied. The ER properties were measured for a wide range of SnO2 and Y2O3 nanoparticle concentrations and DC electrical voltages using concentric cylinder rotary rheometer. Based on the results, ER properties of nanofluids, e.g., apparent viscosity, shear stress, and yield stress, were enhanced by applying electrical field and increasing SnO2 and Y2O3 concentrations.
S. Gh. EtemadEmail:
  相似文献   

9.
Steady mixed convection boundary layer flow from an isothermal horizontal circular cylinder embedded in a porous medium filled with a nanofluid has been studied for both cases of a heated and cooled cylinder. The resulting system of nonlinear partial differential equations is solved numerically using an implicit finite-difference scheme. The solutions for the flow and heat transfer characteristics are evaluated numerically for various values of the governing parameters, namely the nanoparticle volume fraction φ and the mixed convection parameter λ. Three different types of nanoparticles are considered, namely Cu, Al2O3 and TiO2. It is found that for each particular nanoparticle, as the nanoparticle volume fraction φ increases, the magnitude of the skin friction coefficient decreases, and this leads to an increase in the value of the mixed convection parameter λ which first produces no separation. On the other hand, it is also found that of all the three types of nanoparticles considered, for any fixed values of φ and λ, the nanoparticle Cu gives the largest values of the skin friction coefficient followed by TiO2 and Al2O3. Finally, it is worth mentioning that heating the cylinder (λ > 0) delays separation of the boundary layer and if the cylinder is hot enough (large values of λ > 0), then it is suppressed completely. On the other hand, cooling the cylinder (λ < 0) brings the boundary layer separation point nearer to the lower stagnation point and for a sufficiently cold cylinder (large values of λ < 0) there will not be a boundary layer on the cylinder.  相似文献   

10.
The efficiency of utilization of CO 2 laser energy for vaporization of Al 2 O 3 ceramics is evaluated using a mathematical model for the interaction of laser radiation with materials. It is shown that the calculated efficiency of radiation-energy utilization is not higher than 15% at a radiation power density of 105 W/cm 2 on the target. On the experimental facility designed for the synthesis of nanopowders, a vaporization rate of 1 g/h was achieved for Al 2 O 3, which corresponds to a 3% efficiency of radiation-energy utilization. The dependence of the characteristic particle size of a zirconium oxide nanopowder on helium pressure in the range of 0.01–1.00 atm was studied. Results of experiments on vaporization of multicomponent materials (LaNiO 3 and the Tsarev meteorite) are given. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 2, pp. 172–184, March–April, 2007.  相似文献   

11.
We study rates of convergence of solutions in L 2 and H 1/2 for a family of elliptic systems {Le}{\{\mathcal{L}_\varepsilon\}} with rapidly oscillating coefficients in Lipschitz domains with Dirichlet or Neumann boundary conditions. As a consequence, we obtain convergence rates for Dirichlet, Neumann, and Steklov eigenvalues of {Le}{\{\mathcal{L}_\varepsilon\}} . Most of our results, which rely on the recently established uniform estimates for the L 2 Dirichlet and Neumann problems in Kenig and Shen (Math Ann 350:867–917, 2011; Commun Pure Appl Math 64:1–44, 2011) are new even for smooth domains.  相似文献   

12.
The TiO2-water based nanofluid flow in a channel bounded by two porous plates under an oblique magnetic field and variable thermal conductivity is formulated as a boundary-value problem (BVP). The BVP is analytically solved with the homotopy analysis method (HAM). The result shows that the concentration of the nanoparticles is independent of the volume fraction of TiO2 nanoparticles, the magnetic field intensity, and the angle. It is inversely proportional to the mass diffusivity. The fluid speed decreases whereas the temperature increases when the volume fraction of the TiO2 nanoparticles increases. This confirms the fact that the occurrence of the TiO2 nanoparticles results in the increase in the thermal transfer rate. The fluid speed decreases and the temperature increases for both the pure water and the nanofluid when the magnetic field intensity and angle increase. The maximum velocity does not exist at the middle of the symmetric channel, which is in contrast to the plane-Poiseuille flow, but it deviates a little bit towards the lower plate, which absorbs the fluid with a very low suction velocity. If this suction velocity is increased, the temperature in the vicinity of the lower plate will be increased. An explicit expression for the friction factor-Reynolds number is then developed. It is shown that the Hartmann number of the nanofluid is smaller than that of pure water, while the Nusselt number of the nanofluid is larger than that of pure water. However, both the parameters increase if the magnetic field intensity increases.  相似文献   

13.
In this work, the dynamic behavior of poly(methyl methacrylate)/polystyrene blend to which P(S0.5-ran-MMA0.5) was added was studied. Several blend (ranging from 5 to 20 wt% of dispersed phase) and copolymer (up to 20 wt% with respect to dispersed phase) concentrations were studied. The rheological behavior of the blends was compared to Bousmina’s (Rheol Acta 38:73–83, 1999) and Palierne’s (Rheol Acta 29:204–214, 1990) generalized models. The relaxation spectra of the blends were also inferred, and the results were analyzed in light of the analysis of Jacobs et al. [J Rheol 43:1495–1509, 1999]. The relaxation spectra of the blends with smaller dispersed phase (below 10 wt%) and larger copolymer concentrations (above 0.4 wt%) showed the presence of four relaxation times, two corresponding to the blend phases, τ F , corresponding to the relaxation of the shape of the dispersed phase of the blend and that can be attributed to the relaxation of Marangoni stresses tangential to the interface between the dispersed phase and matrix. The experimental values of and were used to infer the interfacial tension (Γ) and the interfacial complex shear modulus (β) for the different blends, Γ decreased with increasing copolymer concentration. β decreased with increasing blend dispersed phase concentration and decreasing copolymer concentration. The predictions of Palierne’s generalized model were found to corroborate the experimental data once the values of Γ and β, found analyzing the relaxation spectra, were used in the calculations. Bousmina’s model was found to corroborate the data only for larger dispersed phase concentration. Paper was presented at the 3rd Annual Rheology Conference, AERC 2006, April 27–29, 2006, Crete, Greece.  相似文献   

14.
This article deals with the study of the steady three-dimensional stagnation point flow of a nanofluid past a circular cylinder that has a sinusoidal radius variation. By means of similarity transformation, the governing partial differential equations are reduced into highly non-linear ordinary differential equations. The resulting non-linear system has been solved analytically using an efficient technique namely homotopy analysis method (HAM). Expressions for velocity and temperature fields are developed in series form. In this study, three different types of nanoparticles are considered, namely alumina (Al2O3), titania (TiO2), and copper (Cu) with water as the base fluid. For alumina–water nanofluid, graphical results are presented to describe the influence of the nanoparticle volume fraction φ and the ratio of the gradient of velocities c on the velocity and temperature fields. Moreover, the features of the flow and heat transfer characteristics are analyzed and discussed for foregoing nanofluids. It is found that the skin friction coefficient and the heat transfer rate at the surface are highest for copper–water nanofluid compared to the alumina–water and titania–water nanofluids.  相似文献   

15.
The properties and microstructure of an Al/(Al2O3 + TiB2 + ZrB2) hybrid composite made by using hot pressing of aluminum combined with different amounts of TiB2, ZrB2, and Al2O3 powders are studied. The mechanical properties of the composites are investigated on the basis of microhardness and compression tests. The results show that the microstructure of the composites is uniform and the particles are well distributed in the matrix.  相似文献   

16.
We study the thermal buckling of a simply supported sigmoid functionally graded (SFGM) rectangular plate using first-order shear deformation theory. The S-FGM system consists of ceramic (Al2O3) and metal (Al) phases varying across the plate thickness according to a law described by two power-law functions. The effective properties of the composite are determined by the rule of mixtures, whose implementation is simpler than that of methods of micromechanics. The thermal heating is characterized by a uniform, linear, or sinusoidal temperature distribution across the plate thickness. The effects of the plate aspect ratio, the relative thickness, the gradient index, and the transverse shear on the buckling temperature difference are studied.  相似文献   

17.
Velocity profile measurements in zero pressure gradient, turbulent boundary layer flow were made on a smooth wall and on two types of rough walls with a wide range of roughness heights. The ratio of the boundary layer thickness (δ) to the roughness height (k) was 16≤δ/k≤110 in the present study, while the ratio of δ to the equivalent sand roughness height (k s) ranged from 6≤δ/k s≤91. The results show that the mean velocity profiles for all the test surfaces agree within experimental uncertainty in velocity-defect form in the overlap and outer layer when normalized by the friction velocity obtained using two different methods. The velocity-defect profiles also agree when normalized with the velocity scale proposed by Zagarola and Smits (J Fluid Mech 373:33–70, 1998). The results provide evidence that roughness effects on the mean flow are confined to the inner layer, and outer layer similarity of the mean velocity profile applies even for relatively large roughness.  相似文献   

18.
TheT ε * integral was calculated on the surface of single edge notched, three-point bend (SE(B)) specimens using experimentally obtained displacements. Comparison was made withT ε * calculated with the measured surface displacements andT ε * calculated at several points through the thickness of a finite element (FE) model of the SE(B) specimen. Good comparison was found between the surfaceT ε * calculated from displacements extracted from the FE model and the surfaceT ε * calculated from experimentally obtained displacements. The computedT ε * integral was also observed to decrease as the crack front was traversed from the surface to the mid-plane of the specimen. Mid-planeT ε * values tend to be approximately 10% of the surface values.  相似文献   

19.
This paper proposes a new neural network ℋ synchronization (NNHS) scheme for unknown chaotic systems. In the proposed framework, a dynamic neural network is constructed as an alternative to approximate the chaotic system. Based on this neural network and linear matrix inequality (LMI) formulation, the NNHS controller and the learning law are presented to reduce the effect of disturbance to an ℋ norm constraint. It is shown that finding the NNHS controller and the learning law can be transformed into the LMI problem and solved using the convex optimization method. A numerical example is presented to demonstrate the validity of the proposed NNHS scheme.  相似文献   

20.
The temperature dependence of the yield stress τ* Ni 3 Ge single crystals is studied. The temperature dependence τ*(T) in the high-temperature region (above 420 K) is found to be conditioned by thermally activated accumulation of the density of non-screw components of superdislocations. Interaction of point defects with edge dislocations and its effect on the temperature anomaly of the yield stress in Ni 3 Ge single crystals are analyzed. The calculated results are found to agree with experimental data. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 4, pp. 154–161, July–August, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号