首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Using ligands based on either an acetylacetonate or a dipyrrin moiety appended with pyridyl groups, a series of novel heteroleptic copper(II) and cobalt(III) complexes combining both chelate units such as (acacpy(2))Cu(dpm-py) and (acacpy(2))Co(dpm-py)(2) (acacpy(2) = 1,3-bis(4-pyridyl)-1,3-propanedionate; dpm-py = 5-(4-pyridyl)dipyrrin) have been prepared and fully characterized. These two complexes were obtained upon reaction of dpm-py with the (acacpy(2))M homoleptic species (M = Cu(II), Co(II)). In the solid state, the (acacpy(2))Cu(dpm-py) complex behaves as a self-complementary metallatecton and leads to the formation of a 1D coordination polymer (CP) through the coordination of a peripheral pyridyl group to the copper centre. Contrastingly, the octahedral (acacpy(2))Co(dpm-py)(2) complex featuring a coordinatively saturated Co(III) centre crystallizes as an isolated mononuclear species. In order to generate heterometallic CPs, both complexes have been used as metallatectons upon their combination with different silver(I) salts. Upon reaction of (acacpy(2))Cu(dpm-py) with Ag(BF(4)) or Ag(TfO), 2- and 3-D heterometallic networks were obtained, respectively. In both cases, sheet type arrangements resulting from the binding of Ag(+) cations by three peripheral pyridyl groups were observed. These 2D sheets are further interconnected through Ag-π interactions with the pyrrolic rings. Under the same conditions, the combination of (acacpy(2))Co(dpm-py)(2) with Ag(TfO) leads to two networks differing by their connectivity patterns and dimensionality. Interestingly, whereas no Ag-π interactions were observed for the 2D network, a combination of coordination bonding with the pyridyl moieties and Ag-π interactions was detected for the 1D architecture.  相似文献   

2.
Three lanthanide complexes of the ditopic ligand 3-cyanopentane-2,4-dionate (acacCN) have been synthesized and structurally characterized. Longer intermolecular contacts result in ninefold coordination of the cation in Ce(acacCN)(3)(H(2)O)(2), whereas mononuclear complexes of the same stoichiometry with coordination number eight are obtained for the smaller Eu(III) and Yb(III) cations. Reaction of these labile compounds with AgPF(6) leads to re-organization of the coordination sphere of the rare earth cations: neutral extended structures are formed in which the peripheric -CN moieties of Ln(acacCN)(4) anions coordinate to silver cations. The initially formed heterometallic networks show additional coordination of water or inclusion of solvent molecules; three different structure types, two of them as isomorphous pairs, have been characterized. In the case of Eu(III) and Yb(III), these solids are instable when stored in their mother liquor and undergo a slow aging process, finally resulting in phase pure stable and solvent-free 3D networks Ln(acacCN)(4)Ag.  相似文献   

3.
The reactions of [AuClL] with Ag(2)O, where L represents the heterofunctional ligands PPh(2)py and PPh(2)CH(2)CH(2)py, give the trigoldoxonium complexes [O(AuL)(3)]BF(4). Treatment of these compounds with thio- or selenourea affords the triply bridging sulfide or selenide derivatives [E(AuL)(3)]BF(4) (E=S, Se). These trinuclear species react with Ag(OTf) or [Cu(NCMe)(4)]PF(6) to give different results, depending on the phosphine and the metal. The reactions of [E(AuPPh(2)py)(3)]BF(4) with silver or copper salts give [E(AuPPh(2)py)(3)M](2+) (E=O, S, Se; M=Ag, Cu) clusters that are highly luminescent. The silver complexes consist of tetrahedral Au(3)Ag clusters further bonded to another unit through aurophilic interactions, whereas in the copper species two coordination isomers with different metallophilic interactions were found. The first is analogous to the silver complexes and in the second, two [S(AuPPh(2)py)(3)](+) units bridge two copper atoms through one pyridine group in each unit. The reactions of [E(AuPPh(2)CH(2)CH(2)py)(3)]BF(4) with silver and copper salts give complexes with [E(AuPPh(2)CH(2)CH(2)py)(3)M](2+) stoichiometry (E=O, S, Se; M=Ag, Cu) with the metal bonded to the three nitrogen atoms in the absence of AuM interactions. The luminescence of these clusters has been studied by varying the chalcogenide, the heterofunctional ligand, and the metal.  相似文献   

4.
Crystalline materials have been isolated and characterized from mixing the silver carborane salts Ag(CB(11)H(12)) or Ag[Co(C(2)B(9)H(11))(2)] with nitrile ligands, either terminal acetonitrile or potentially bridging alkanedinitriles. Most of the complexes showed B-H...Ag interactions between the silver center and carborane anion. [Ag(acetonitrile)(2)(CB(11)H(12))] has a hexagonal network structure. [Ag(malonitrile)(2)(CB(11)H(12))] is a discrete dimeric complex, while [Ag(4)(succinonitrile)(5)(CB(11)H(12))(4)], [Ag(glutaronitrile)(2)][Co(C(2)B(9)H(12))(2)], and [Ag(glutaronitrile)[Co(C(2)B(9)H(11))(2)]] all show coordination chain structures. The carborane anions in [Ag(adiponitrile)[Co(C(2)B(9)H(11))(2)]] bridge between Ag centers to give a 3D CdSO(4)-related coordination polymer. The structure of [Ag(malonitrile)(2)](BF(4)) was also determined to have an unusual chiral diamondoid structure with a skewed 2-fold interpenetration.  相似文献   

5.
The Al(III) complex of 3-cyanopentane-2,4-dionate (acacCN) features peripheric nitrile groups which may coordinate to silver cations. As the Al(acacCN)(3) building block ranges between inertness and lability, its reactivity towards Ag(I) salts depends on the solvent and the weakly or non-coordinating counter anions; an impressive range of different extended structures has been encountered. With AgPF(6), the original building block is retained and hexafluorophosphate remains uncoordinated. A highly symmetric 3D crystalline solid forms in the presence of trichloromethane, and with benzene a tetrasolvate with large solvent-filled voids is obtained. Two different classes of reaction products with silver triflate have been observed. In addition to networks incorporating Al(acacCN)(3), partial solvolysis may lead to a dinuclear methoxide-bridged derivative. The resulting Al(2)(μ-OMe)(2) core may be perceived as a four-connected node in a self-interpenetrating 3D network. Earlier studies reported transmetalation for the reaction of Al(acacCN)(3) with AgNO(3) and we find the same reactivity for silver tetrafluoroborate. Full degradation of the Al(III) building block with formation of [Ag(acacCN)] is observed.  相似文献   

6.
Mild deprotonation of a 2-pyridyl (py)-functionalized phosphoric triamide [PO(NHpy)(3)] in the absence of an external base was studied in the presence of various silver(I) salts. Interesting examples of octa- and hepta-nuclear Ag(I) complexes coordinated to imido and pyridyl groups were obtained when more reactive Ag(I) salts, such as AgClO(4) and AgBF(4), were used, while the less reactive AgNO(3) reacts only with the peripheral pyridyl groups leading to a tri-nuclear cluster. Structural determination of these Ag(I) complexes show that sequential deprotonation of the ligand amino protons were achieved forming imido P(V) species analogous to the H(2)PO(4)(-) and HPO(4)(2-) ions.  相似文献   

7.
Luminescent cyclometalated iridium complexes based on pyridyl appended dipyrrin ligands were prepared and characterized both in the solid state and in solution. The functionalization of the peripheral pyridyl moiety causes dramatic changes on the emission properties of both mono- and hetero- binuclear complexes. A detailed photophysical investigation of the two mononuclear derivatives of the [(Ppy)(2)Ir(dpm-py)] family (Ppy=2-phenylpyridine, dpm-py=5-(4-pyridyl)dipyrrin) was carried out. Introduction of methyl groups at the 3 and 5?positions on the pyridyl unit diminishes the non-radiative rate constant by locking the peripheral pyridyl group orthogonally to the dipyrrinato plane. Thus, they limit the rotational degree of freedom, as well as the charge-transfer character of the excited state. The coordination of these two complexes to a cyclometalated [(dppy)Pt] fragment (dppy=2,6-diphenylpyridine) led to the formation of binuclear species in which the iridium and platinum complexes behave as acceptors and donors, respectively. In these heterobinuclear compounds, the methyl groups do not influence the energy transfer efficiency, which is estimated to be above 90?%. However, they do limit the charge-transfer character of the acceptor's excited state, as well as its rotational degree of freedom, thus avoiding the detrimental effect upon the photophysical performance.  相似文献   

8.
The reaction of [AuCl(P-N)], in which P-N represents a heterofunctional phosphine ligand, with pentafluorothiophenol, HSC(6)F(5), gives the thiolate gold derivatives [Au(SC(6)F(5))(P-N)] (P-N = PPh(2)py (1), PPh(2)CH(2)CH(2)py (2), or PPhpy(2) (3)). Complex [Au(SC(6)F(5))(PPh(2)py)] (1) reacts with [Au(OTf)(PPh(2)py)] in a 1:1 or 1:2 molar ratio to afford the di- or trinuclear species [Au(2)(μ-SC(6)F(5))(PPh(2)py)(2)]OTf (4) and [Au(3)(μ(3)-SC(6)F(5))(PPh(2)py)(3)](OTf)(2) (5), with the thiolate acting as a doubly or triply bridging ligand. The reactivity of the mononuclear compounds [Au(SC(6)F(5))(P-N)] toward silver or copper salts in different ratios has been investigated. Thus, the treatment of [Au(SC(6)F(5))(P-N)] with Ag(OTf) or [Cu(NCMe)(4)]PF(6) in a 1:1 molar ratio gives complexes of stoichiometry [AuAg(OTf)(μ-SC(6)F(5))(P-N)] (P-N = PPh(2)py (6), PPh(2)CH(2)CH(2)py (7), or PPhpy(2) (8)) or [AuCu(μ-SC(6)F(5))(P-N)(NCMe)]PF(6) (P-N = PPh(2)py (9), PPh(2)CH(2)CH(2)py (10), or PPhpy(2) (11)). These complexes crystallize as dimers and display different coordination modes of the silver or copper center, depending on the present functionalized phosphine ligand. The treatment of [Au(SC(6)F(5))(PPh(2)py)] with silver and copper compounds in other molar ratios has been carried out. In a 2:1 ratio, the complexes [Au(2)M(μ-SC(6)F(5))(2)(μ-PPh(2)py)(2)]X (M = Ag, X = OTf (12); M = Cu, X = PF(6) (13)) are obtained. The same reaction in a 4:3 molar ratio affords the species [Au(4)M(2)(μ-SC(6)F(5))(3)(μ-PPh(2)py)(4)]X(3) (M = Ag, X = OTf (14); M = Cu, X = PF(6) (15)). The crystal structures of some of these complexes reveal different interactions among the metallic d(10) centers. The complexes display dual emission. The band at higher energy has been attributed to intraligand (IL) transitions, and the one at lower energy has been assigned to a ligand to metal (LM) charge transfer process. The latter emission is modulated by the heterometal (silver or copper).  相似文献   

9.
Luminescent cyclometalated iridium complexes based on pyridyl appended dipyrrin ligands were prepared and characterized both in the solid state and in solution. The functionalization of the peripheral pyridyl moiety causes dramatic changes on the emission properties of both mono‐ and hetero‐ binuclear complexes. A detailed photophysical investigation of the two mononuclear derivatives of the [(Ppy)2Ir(dpm‐py)] family (Ppy=2‐phenylpyridine, dpm‐py=5‐(4‐pyridyl)dipyrrin) was carried out. Introduction of methyl groups at the 3 and 5 positions on the pyridyl unit diminishes the non‐radiative rate constant by locking the peripheral pyridyl group orthogonally to the dipyrrinato plane. Thus, they limit the rotational degree of freedom, as well as the charge‐transfer character of the excited state. The coordination of these two complexes to a cyclometalated [(dppy)Pt] fragment (dppy=2,6‐diphenylpyridine) led to the formation of binuclear species in which the iridium and platinum complexes behave as acceptors and donors, respectively. In these heterobinuclear compounds, the methyl groups do not influence the energy transfer efficiency, which is estimated to be above 90 %. However, they do limit the charge‐transfer character of the acceptor’s excited state, as well as its rotational degree of freedom, thus avoiding the detrimental effect upon the photophysical performance.  相似文献   

10.
The synthesis of neutral [Cu(dpm)2] and [Cu(dpm)(acac)] (dpm = dipyrromethene, acac = acetylacetonato) complexes is presented. The formation of the asymmetric metal complexes was monitored by electronic absorption and infrared spectroscopy. Two of the complexes investigated, containing pyrdpm ligands (pyrdpm = pyridyldipyrromethene), form 1-dimensional coordination polymers. The coordination polymers formed by these complexes have been characterized by single-crystal X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. The complexes possess square pyramidal coordination geometries with the apical position occupied by the meso-pyridyl donor of a neighboring complex in the crystal lattice. The features of these coordination complexes that facilitate formation of extended solids have been probed. Symmetric [Cu(pyrdpm)2] complexes are unable to form coordination solids due to steric hindrance at the metal center. Use of cyano donors in complexes such as [Cu(cydpm)(acac)] (cydpm = cyanodipyrromethene) in lieu of pyridyl donors also fail to form network solids. Through these systematic studies, both the basic coordination chemistry of these complexes and the fundamental design requirements for synthesizing this novel class of coordination polymers have been defined.  相似文献   

11.
To overcome the unfavorable steric pressures associated with 2,6-disubstitution in encumbering pyridine ligands, the coordination chemistry of a 2,5-disubstituted variant, namely, 2,5-dimesitylpyridine (2,5-Mes(2)py), is reported. This diaryl pyridine shows good binding ability to a range of transition-metal fragments with varying formal oxidation states and coligands. Treatment of 2.0 equiv of 2,5-Mes(2)py with monovalent Cu and Ag triflate sources generates complexes of the type [M(2,5-Mes(2)py)(2)]OTf (M = Cu, Ag; OTf = OSO(2)CF(3)), which feature long M-OTf distances and a substrate-accessible primary coordination sphere. Combination of 2,5-Mes(2)py with Cu(OTf)(2) and Pd(OAc)(2) produces four-coordinate complexes featuring cis- and trans-2,5-Mes(2)py orientations, respectively. The four-coordinate palladium complex Pd(OAc)(2)(2,5-Mes(2)py)(2) is found to resist py-ligand dissociation at room temperature in solution, but functions as a precatalyst for the aerobic C-H bond olefination of benzene at elevated temperatures. This C-H bond activation chemistry is compared with a similar Pd-based system featuring 2,6-disubstituted pyridines. 2,5-Mes(2)py also readily supports mono- and dinuclear divalent Co complexes, and the solution-phase equilibria between such species are detailed. The coordination studies presented highlight the potential of 2,5-Mes(2)py to function as an encumbering ancillary for the stabilization of low-coordinate complexes and as a supporting ligand for metal-mediated transformations.  相似文献   

12.
Seward C  Chan J  Song D  Wang S 《Inorganic chemistry》2003,42(4):1112-1120
The reaction of AgX, where X = trifluoroacetate (CF(3)CO(2)(-), tfa), nitrate (NO(3)(-)), trifluoromethanesulfonate (triflate, CF(3)SO(3)(-), OTf), hexafluorophosphate (PF(6)(-)), or perchlorate (ClO(4)(-)), with 2,2',3' '-tripyridylamine (tpa) yields five novel silver(I) complexes, which have been structurally characterized. The five complexes have the same 1:1 stoichiometry of Ag/tpa but exhibit different modes of coordination, depending upon the counterion present in the compound. Compound 1, [Ag(tpa)(tfa)](n)(), forms a 1D coordination polymer of [Ag(tpa)(tfa)](2) dimer units linked through bridging tfa counterions. Compound 2, [Ag(tpa)(CH(3)CN)(NO(3))](n), forms a zigzag chain 1D coordination polymer exclusively through Ag-N bonds. In compounds 1 and 2, each tpa ligand is bound to two Ag(I) ions via a 2-py and a 3-py group. Compound 3, [Ag(tpa)(OTf)](n), forms a ribbonlike 1D coordination polymer, in which each tpa ligand binds to three different silver centers via all three pyridyl groups, and the counterion remains coordinated to the Ag(I) center. Compounds 4, [Ag(tpa)(CH(3)CN)](n)(PF(6))(n), and 5, [Ag(tpa)(CH(3)CN)](n)() (ClO(4))(n), display ribbonlike structures resembling that of 3, except that the counterions are not coordinated. All complexes are luminescent in acetonitrile solution, with emission maxima in the near-UV region (lambda(max) = 366, 368, 367, 367, and 368 nm for 1-5, respectively). At 77 K, the emission maxima are red-shifted to lambda(max) = 452, 453, 450, 450, and 454 nm for 1-5, respectively.  相似文献   

13.
A neutral selenium donor ligand, [CpFe(CO)(2)P(Se)(OR)(2)] is used for the construction of Cu(I) and Ag(I) complexes with a well-defined coordination environment. Four clusters [M{CpFe(CO)(2)P(Se)(OR)(2)}(3)](PF(6)), (where M = Cu, R = (n)Pr, ; R = (i)Pr, and M = Ag, R = (n)Pr, ; R = (i)Pr, ) are isolated from the reaction of [M(CH(3)CN)(4)(PF(6))] (where M = Cu or Ag) and [CpFe(CO)(2)P(Se)(OR)(2)] in a molar ratio of 1 : 3 in acetonitrile at 0 degrees C. The reaction of [CpFe(CO)(2)P(Se)(O(i)Pr)(2)] with cuprous halides in acetone produce two mixed-metal, Cu(I)(2)Fe(II)(2) clusters, [Cu(mu-X) {CpFe(CO)(2)P(Se)(O(i)Pr)(2)}](2) (X = Cl, ; Br, ). All six clusters have been fully characterized spectroscopically ((1)H, (13)C, (31)P, and (77)Se NMR, IR), and by elemental analyses. X-Ray crystal structures of and consist of discrete cationic clusters in which three iron-selenophosphito fragments are linked to the central copper or silver atom via selenium atoms. Both clusters and crystallize in the noncentrosymmetric, hexagonal space group P6[combining macron]2c. The coordination geometry around the copper or silver atom is perfect trigonal-planar with Cu-Se and Ag-Se distances, 2.3505(7) and 2.5581(7) A, respectively. X-Ray crystallography also reveals that each copper center in neutral heterometallic clusters and is trigonally coordinated to two halide ions and a selenium atom from the selenophosphito-iron moiety. The structures can also be delineated as a dimeric unit which is generated by an inversion center and has a Cu(2)X(2) parallelogram core. The dihedral angle between the Cu(2)X(2) plane and the plane composed of Cp ring is found to be 24.62 and 84.58 degrees for compound and , respectively. Hence the faces of two opposite Cp rings are oriented almost perpendicular to the Cu(2)X(2) plane in , but are close to be parallel in . This is the first report of the coordination chemistry of the anionic selenophosphito moiety [(RO)(2)PSe](-), the conjugated base of a secondary phosphine selenide, which acts as a bridging ligand with P-coordination on iron and Se-coordination to copper or silver.  相似文献   

14.
Kondracka M  Englert U 《Inorganic chemistry》2008,47(22):10246-10257
A rational approach to the synthesis of silver-chromium mixed-metal coordination polymers is presented: 3-cyanoacetylacetone (HacacCN) features two potential binding sites. After deprotonation, it has been used as a chelating dionato ligand in the pseudo octahedral complex Cr(acacCN) 3; two polymorphs of this compound have been identified. In its protonated form, HacacCN was employed as a N donor toward Ag(I). Both functionalities may be exploited within the same solid: The chromium complex and silver salts of weakly coordinating anions have been successfully combined to mixed-metal coordination polymers. Cr(acacCN) 3 plays the role of a substitution-inert tecton with predictable bonding geometry which interacts with the conformationally soft silver cations via two or all three of its peripheric nitrile groups. From an equimolar amount of both constituents, six solids featuring a 1:1 ratio between Cr- and Ag-derived building blocks were obtained in good yield; their structures depend on the counteranions and the cocrystallized solvent and correspond either to 2D networks with (6,3) or augmented (4,4) topology or, in one case, adopt a 3D connectivity. In addition, three products with a Cr/Ag = 2:1 stoichiometry have been isolated: they adopt two-dimensional network structures.  相似文献   

15.
The synthesis and characterization of a series of [2 + 2] metallamacrocycles based on combinations of silver salts AgX (X = BF(4)(-), PF(6)(-), SbF(6)(-), TfO(-)) with pyridyl, p-phenyl-pyridyl and p-phenyl-imidazolyl appended dipyrrin (dpm) derivatives is reported. In these species, the silver ion is linearly coordinated to one of the two pyrrolic groups of the dpm moiety through the nitrogen atom and to a N atom belonging to the peripheral coordinating group. The organisation of the cyclic complexes in the solid state is dependent on the nature of the anion X(-) and on the hydrogen bonding patterns formed with the pyrrolic NH group, acting as a donor. Furthermore, in some cases, d(10)-d(10) argentophilic interactions are observed between consecutive macrocyclic complexes in the crystalline phase. The robustness of some of the complexes obtained compounds was investigated by (1)H- and (13)C-NMR spectroscopy which revealed the structural integrity of the cyclic species in solution. A DOSY NMR study on the cyclic entity based on the imidazolyl appended dpm further assessed that the complex present in solution was indeed the [2 + 2] metallamacrocycle.  相似文献   

16.
The picolyl-substituted NHC complex [Au(im(CH(2)py)(2))(2)]PF(6) (1) reacts with two equivalents of copper(I) halides, affording compounds [Au(im(CH(2)py)(2))(2)(CuX)(2)]PF(6) (X = Cl, 2; Br, 3; I, 4). Each complex contains a nearly linearly coordinated [Au(NHC)(2)](+) center where the two picolyl groups on each im(CH(2)py)(2) ligand chelate a single copper atom. The Cu(I) center resides in a distorted tetrahedral environment and is coordinated to two pyridyl groups, a halide ion, and a gold metalloligand. The Au(I)-Cu(I) separations measure 2.7030(5), 2.6688(9), and 2.6786(10) ? for 2-4, respectively. Additionally, each Cu(I) center is further coordinated by a semibridging NHC ligand with short Cu-C separations of ~2.3 ?. In solution, these complexes dissociate the Cu(I) ion. In the solid state, 2-4 are photoluminescent with respective emission maxima of 512, 502, and 507 nm. The reaction of [Au(im(CH(2)py)(2))(2)]PF(6) with four equivalents of CuBr afforded the coordination polymer {[AuCu(2)Br(2)(im(CH(2)py)(2))(2)]Br·3CH(3)CN}(n) (5). This polymeric complex contains [Au(NHC)(2)](+) units interconnected by Cu(2)Br(2) dimers. In 5, the Au-Cu separations are long at 4.23 and 4.79 ?, while the Cu-Cu distance is considerably shorter at 2.9248(14) ?. In the solid state, 5 is photoluminescent with a broad band appearing at 533 nm.  相似文献   

17.
The iron(III) and aluminium(III) complexes of 1,3-di(4-pyridyl)propane-1,3-dionato (dppd) and 1,3-di(3-pyridyl)propane-1,3-dionato (dmppd), [Fe(dppd)(3)] 1, [Fe(dmppd)(3)] 2, [Al(dppd)(3)] 3 and [Al(dmppd)(3)] 4 have been prepared. These complexes adopt molecular structures in which the metal centres contain distorted octahedral geometries. In contrast, the copper(II) and zinc(II) complexes [Cu(dppd)(2)] 5 and [Zn(dmppd)(2)] 6 both form polymeric structures in which coordination of the pyridyl groups into the axial positions of neighbouring metal centres links discrete square-planar complexes into two-dimensional networks. The europium complex [Eu(dmppd)(2)(H(2)O)(4)]Cl·2EtOH·0.5H(2)O 7 forms a structure containing discrete cations that are linked into sheets through hydrogen bonds, whereas the lanthanum complex [La(dmppd)(3)(H(2)O)]·2H(2)O 8 adopts a one-dimensional network structure, connected into sheets by hydrogen bonds. The iron complexes 1 and 2 act as metalloligands in reactions with silver(I) salts, with the nature of the product depending on the counter-ions present. Thus, the reaction between 1 and AgBF(4) gave [AgFe(dppd)(3)]BF(4)·DMSO 9, in which the silver centres link the metalloligands into discrete nanotubes, whereas reactions with AgPF(6) and AgSbF(6) gave [AgFe(dppd)(3)]PF(6)·3.28DMSO 10 and [AgFe(dppd)(3)]SbF(6)·1.25DMSO 11, in which the metalloligands are linked into sheets. In all three cases, only four of the six pyridyl groups present on the metalloligands are coordinated. The reaction between 2 and AgNO(3) gave [Ag(2)Fe(dmppd)(3)(ONO(2))]NO(3)·MeCN·CH(2)Cl(2)12. Compound 12 adopts a layer structure in which all pyridyl groups are coordinated to silver centres and, in addition, a nitrate ion bridges between two silver centres. A similar structure is adopted by [Ag(2)Fe(dmppd)(3)(O(2)CCF(3))]CF(3)CO(2)·2MeCN·0.25CH(2)Cl(2)13, with a bridging trifluoroacetate ion playing the same role as the nitrate ion in 12.  相似文献   

18.
Ferrocene-based ligands 1,1'-di(pyrazinyl)ferrocene (L1) and 1,1'-di(2-pyrimidinyl)ferrocene (L2) were synthesized and copper and silver complexes were obtained from L1. Coordination polymers [{Cu(2)(PhCOO)(4)}(L1)](n) (1), [{Cu(2)(C(5)H(11)COO)(4)}(L1)](n) (2), and [{Cu(2)(OAc)(4)}(L1)](n).0.5n[Cu(2)(OAc)(4)(H(2)O)(2)].1.5nCH(3)CN (3) resulted from the reaction with the corresponding copper carboxylates. In all three complexes, L1 links the dinuclear copper carboxylate units to form one-dimensional step-like chains. In 2, these chains are further linked by [Cu(2)(OAc)(4)(H(2)O)(2)] dinuclear units via hydrogen bonding to form sheet structures. The reaction of L1 with copper(I) iodide resulted in a multinuclear complex [(CuI)(4)(L1)(2)].(L1) (4), which contains a [(CuI)(4)(L1)(2)] diferrocene unit with a step-like (CuI)(4) core. Reactions of L1 with silver(I) salts resulted in silver-bridged diferrocenes [Ag(2)(L1)(2)]X(2) (X = ClO(4) (5a, b), NO(3) (6a-c) and PF(6) (7)), some of which incorporate aromatic solvents into their crystal lattices. The intramolecular Ag...Ag separations in these metallamacrocycles (3.211-3.430 A) depended upon the counter-anions and on the coordination mode of the silver ions. In all of these coordination complexes, L1adopts a synperiplanar eclipsed conformation and acts as a bidentate ligand, with only the 5-nitrogen of each pyrazine ring involved in coordination.  相似文献   

19.
Silver(I) complexes of the bis(pyrazolyl)methane ligands Ph(2)C(pz)(2), PhCH(pz)(2), and PhCH(2)CH(pz)(2) (pz = pyrazolyl ring) have been prepared in an attempt to explore how sterically hindered poly(pyrazolyl)methane ligands influence the variable coordination geometries exhibited by silver(I) complexes, especially its ability to participate in cation...pi interactions. The complex (Ag[(pz)(2)CPh(2)](2))(PF(6)).C(3)H(6)O adopts an unusual square planar coordination environment as indicated by the sum of the four N-Ag-N angles being 360 degrees. The proximity of phenyl groups above and below the AgN(4) core enforces the unusual coordination geometry about the metal center. This arrangement is not a result of silver(I)...pi arene interactions but rather of the constraints imposed by the steric crowding caused by (aryl)(2)C(pz)(2) ligands. In contrast, the complexes of the other two ligands, (Ag[(pz)(2)CHPh](2))(PF(6)).0.5CH(2)Cl(2) and (Ag[(pz)(2)CH(CH(2)Ph)](2))(PF(6)).CH(2)Cl(2), show normal tetrahedral geometry about the silver(I), also with no indication of silver(I)...pi arene interactions. All three new complexes have extended supramolecular structures supported by a combination of CH...pi and CH...F interactions.  相似文献   

20.
A series of metal-organic frameworks (MOFs) based upon the ligand 2,6-diphenyl-1,4-dibenzoic acid [Ph2C6H2(CO2H)2]infinity have been prepared and characterized by X-ray crystallography. The networks exhibit a variety of topologies and coordination modes at the metal center. The reaction of the ligand with cobalt(II) nitrate or zinc(II) nitrate in methanol/pyridine results in the formation of isostructural 1-D chains [(Ph2C6H2(CO2)2)M(py)2(MeOH)]infinity, where M = Zn, Co; however, in the presence of ethanol and triethylamine, Zn(NO3)2 reacts to form a 2-D clay-like network, [(Ph2C6H2(CO2)2)Zn(EtOH)2]infinity. 2-D networks are also formed in similar reactions with copper(II) nitrate or silver(I) nitrate to give [(Ph2C6H2(CO2)(CO2H))2Cu(py)2]infinity, [(Ph2C6H2(CO2)CO2H))2Cu(py)4.2H2O](infinity), and [(Ph2C6H2(CO2)2)Ag2]infinity, respectively. The hydrogen-bonded chains formed by the ligand alone and with 4,4'-dipyridyl are also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号