首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The motion of long bubbles through viscoelastic fluids in capillary tubes   总被引:2,自引:0,他引:2  
The penetration of long gas bubble through a viscoelastic fluid in a capillary tube has been studied in order to investigate the influence of viscoelastic material properties on the hydrodynamic coating thickness and local flow kinematics. Experiments are conducted for three tailored ideal elastic (Boger) fluids, designed to exhibit similar steady shear properties but substantially different elastic material functions. This allows for the isolation of elastic and extensional material effects on the bubble penetration process. The shear and extensional rheology of the fluid is characterized using rotational and filament stretching rheometers (FSR). The fluids are designed such that the steady-state extensional viscosity measured by the FSR at a Deborah number (De) greater than 1 differs over three orders of magnitude (Trouton ratio = 103–106). The experiment set up to measure the hydrodynamic coating thickness is designed to provide accurate data over a wide range of capillary numbers (0.01 < Ca < 100). The results indicate that the coating thickness in this process increases with an increase in the extensionally thickening nature of the fluid. Experiments are also conducted using several different capillary tube diameters (0.1 < D < 1 cm), in order to compare responses at similar Ca but different flow De. Suitable scaling methods and nonlinear viscoelastic constitutive equations are explored to characterize the displacement process for polymeric fluids. Bubble tip shapes at different De are recorded using a CCD camera, and measured using an edge detection algorithm. The influence of the mixed flow field on the bubble tip shape is examined. Particle tracking velocimetry experiments are conducted to compare the influence of viscoelastic properties on the velocity field in the vicinity of the bubble tip. Local shear and extension rates are calculated in the vicinity of the bubble tip from the velocity data. The results provide quantitative information on the influence of elastic and extensional properties on the bubble penetration process in gas-assisted injection molding. The bubble shape and velocity field information provides a basis for evaluating the performance of constitutive equations in mixed flow. Received: 19 January 1999 Accepted: 30 June 1999  相似文献   

2.
A novel hydrodynamic effect, namely, slow contactless motion of a heavy spherical particle along an inclined wall, accompanied by the formation of a finite particle–wall clearance under the action of a cavitation-induced lift force, is investigated. Similarity parameters controlling the particle motion, determined using the dimensionality theory, are validated experimentally. These parameters are related to the atmospheric pressure, the surface tension on the liquid–air interface, the density of the air dissolved in the fluid, the particle weight in the fluid, and the viscoelastic properties of the fluid.This paper was presented at the AERC 2005.  相似文献   

3.
The influence of relaxation and retardation time on peristaltic transport of an incompressible Oldroydian viscoelastic fluid by means of an infinite train of sinusoidal waves traveling along the walls of a two-dimensional flexible channel is investigated. A perturbation solution is obtained for the case in which the amplitude ratio (wave amplitude to channel half-width) is small. The results show that the values of the mean axial velocity of an Oldroydian viscoelastic fluid is smaller than that for a Newtonian fluid. The reflux phenomena are discussed. It is found that the critical reflux pressure gradient decreases with increasing retardation time and increases with increasing relaxation time. Numerical results are reported for different values of the physical parameters of interest. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 6, pp. 86–95, November–December, 2005.  相似文献   

4.
The fractional calculus approach is introduced into the seepage mechanics. A three-dimensional relaxation model of viscoelastic fluid is built. The models based on four boundary conditions of exact solution in Laplace space for some unsteady flows in an infinite reservoir is obtained by using the Laplace transform and Fourier sine and cosine integral transform. The pressure transient behavior of non-Newtonian viscoelastic fluid is studied by using Stehfest method of the numerical Laplace transform inversion and Gauss–Laguerre numerical integral formulae. The viscoelastic fluid is very sensitive to the order of the fractional derivative. The change rules of pressure are discussed when the parameters of the models change. The plots of type pressure curves are given, and the results can be provided to theoretical basis and well-test method for oil field.  相似文献   

5.
The parameter determination of viscoelastic material is a multi-variable, multi-aim nonlinear optimization problem, which made the optimization process very complicated. In this paper a hybrid optimal algorithm was proposed to determine the viscoelastic parameters in the constitutive relation according to the experimentally obtained mechanical properties. This algorithm merges the Broydon–Fletcher–Goldfarb–Shanno search into a genetic algorithm framework as a basic operator in order to enhance the local search capability. The proposed hybrid algorithm not only can reduce the iterative times greatly but can abolish the limitation of initial parameter values. Nonlinear material characteristic curve-fitting was carried out using the proposed algorithm and other existing approaches. And the comparison results show this algorithm is accurate and effective. The numerical simulation and experimental study of viscoelastic cantilever beam also indicates that the finite element formulation and the calculative viscoelastic model parameters are reliable. The proposed optimization method can be extended to further complex parameter estimation researches.  相似文献   

6.
The effect of power law index parameter of the non-Newtonian fluid on free convection heat and mass transfer from a vertical wall is analyzed by considering double dispersion in a non-Darcy porous medium with constant wall temperature and concentration conditions. The Ostwald–de Waele power law model is used to characterize the non-Newtonian fluid behavior. In this case a similarity solution is possible. The variation of heat and mass transfer coefficients with the governing parameters such as power law index, thermal and solutal dispersion parameters, inertia parameter, buoyancy ratio, and the Lewis number is discussed for a wide range of values of these parameters.  相似文献   

7.
An approximate analytical solution is derived for the Couette–Poiseuille flow of a nonlinear viscoelastic fluid obeying the Giesekus constitutive equation between parallel plates for the case where the upper plate moves at constant velocity, and the lower one is at rest. Validity of this approximation is examined by comparison to the exact solution during a parametric study. The influence of Deborah number (De) and Giesekus model parameter (α) on the velocity profile, normal stress, and friction factor are investigated. Results show strong effects of viscoelastic parameters on velocity profile and normal stress. In addition, five velocity profile types were obtained for different values of α, De, and the dimensionless pressure gradient (G).  相似文献   

8.
The stability of an infinite viscoelastic plate on an elastic foundation in a viscous incompressible flow is studied. The Navier-Stokes system is linearized for an exponential velocity profile. The problem is reduced by a Fourier-Laplace transform to a system of ordinary differential equations, whose solution is found in the form of convergent series. The roots of the dispersion relation that characterize the stability of the system are found numerically. The effect of the viscosities of the fluid and the plate on the stability of the waves propagating upstream and downstream is studied. The results are compared with available data on the stability of a viscoelastic plate in an ideal fluid flow. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 4, pp. 66–74, July–August, 2006.  相似文献   

9.
A continuum constitutive theory of corotational derivative type is developed for the anisotropic viscoelastic fluid–liquid crystalline (LC) polymers. A concept of anisotropic viscoelastic simple fluid is introduced. The stress tensor instead of the velocity gradient tensor D in the classic Leslie–Ericksen theory is described by the first Rivlin–Ericksen tensor A and a spin tensor W measured with respect to a co-rotational coordinate system. A model LCP-H on this theory is proposed and the characteristic unsymmetric behaviour of the shear stress is predicted for LC polymer liquids. Two shear stresses thereby in shear flow of LC polymer liquids lead to internal vortex flow and rotational flow. The conclusion could be of theoretical meaning for the modern liquid crystalline display technology. By using the equation, extrusion–extensional flows of the fluid are studied for fiber spinning of LC polymer melts, the elongational viscosity vs. extension rate with variation of shear rate is given in figures. A considerable increase of elongational viscosity and bifurcation behaviour are observed when the orientational motion of the director vector is considered. The contraction of extrudate of LC polymer melts is caused by the high elongational viscosity. For anisotropic viscoelastic fluids, an important advance has been made in the investigation on the constitutive equation on the basis of which a series of new anisotropic non-Newtonian fluid problems can be addressed. The project supported by the National Natural Science Foundation of China (10372100, 19832050) (Key project). The English text was polished by Yunming Chen.  相似文献   

10.
A mathematical model for the process of forming of synthetic fibers moving as a bundle is formulated. Three main versions are considered: forming of exposed bundles, forming in shafts with blowing, and stretching of fibers by means of an ejector. Low and high-speed forming regimes are also considered within the framework of the Maxwell model of a viscoelastic fluid. The calculations performed showed that the parameters of the fiber bundle produced depend on the method of forming used and on the local conditions in high-speed stretching, accompanied by oriented crystallization. Dnepropetrovsk State University, Dnepropetrovsk 320625. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 1, pp. 184–192, January–February, 1999.  相似文献   

11.
Low-viscosity micellar aqueous solutions of cetyltrimethylammonium bromide (CTAB) undergo a major change in the presence of the hydrotrope, potassium 1-phenylmethylsulfate (KPhMS), producing a highly viscoelastic entanglement network of polymer-like micelles. The system studied here shows typical shear banding flow behavior, which tends to disappear with increasing the hydrotrope-to-surfactant concentration ratio (C H / C S). The linear rheological response was analyzed with the model of Granek–Cates, whereas the nonlinear behavior was reproduced with the Bautista–Manero–Puig (BMP) model. Both models introduce a kinetic equation to account for the breaking and reformation of the micelles, and they predict the linear and nonlinear rheological data very well. This paper was presented at Annual European Rheology Conference (AERC) held in Hersonisos, Crete, Greece, April 27–29, 2006.  相似文献   

12.
A three-field local projection stabilized (LPS) finite element method is developed for computations of a three-dimensional axisymmetric buoyancy driven liquid drop rising in a liquid column where one of the liquid is viscoelastic. The two-phase flow is described by the time-dependent incompressible Navier-Stokes equations, whereas the viscoelasticity is modeled by the Giesekus constitutive equation in a time-dependent domain. The arbitrary Lagrangian-Eulerian (ALE) formulation with finite elements is used to solve the governing equations in the time-dependent domain. Interface-resolved moving meshes in ALE allows to incorporate the interfacial tension force and jumps in the material parameters accurately. A one-level LPS based on an enriched approximation space and a discontinuous projection space is used to stabilize the numerical scheme. A comprehensive numerical investigation is performed for a Newtonian drop rising in a viscoelastic fluid column and a viscoelastic drop rising in a Newtonian fluid column. The influence of the viscosity ratio, Newtonian solvent ratio, Giesekus mobility factor, and the Eötvös number on the drop dynamics are analyzed. The numerical study shows that beyond a critical Capillary number, a Newtonian drop rising in a viscoelastic fluid column experiences an extended trailing edge with a cusp-like shape and also exhibits a negative wake phenomena. However, a viscoelastic drop rising in a Newtonian fluid column develops an indentation around the rear stagnation point with a dimpled shape.  相似文献   

13.
The effect of thermal modulation on the onset of convection in a horizontal, anisotropic porous layer saturated by a viscoelastic fluid is investigated by a linear stability analysis. Darcy’s law with viscoelastic correction is used to describe the fluid motion. The perturbation method is used to find the critical Rayleigh number and the corresponding wavenumber for small amplitude thermal modulation. The stability of the system characterized by a correction Rayleigh number is calculated as a function of the thermal and mechanical anisotropy parameters, the viscoelastic parameters and the frequency of modulation. It is found that the onset of convection can be delayed or advanced by the factors represented by these parameters. The results of the problem have possible implications in mantle convection.  相似文献   

14.
An isothermal spherical layer of a viscoelastic liquid described by the one-parameter Maxwell model is considered. When the model parameter is taken equal to zero, a model of a purely viscous Newtonian fluid is obtained. The stability of the spherical layer of liquid with respect to small radial perturbations of the velocity and pressure is investigated for both types of liquids. Leningrad. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 170–171, September–October, 1988.  相似文献   

15.
Three disparate food systems (gummy candy, Mozzarella cheese, and cooked ham) were characterized for their viscoelastic behavior under isothermal conditions over an extended frequency range of 10−3 to 104 Hz using broadband viscoelastic spectroscopy (BVS). The materials were tested for any stress-induced fluid flow. However, no evidence of fluid flow was found under the tested frequency range. Validity of time–temperature superposition for the selected materials was also tested and compared with data from BVS.  相似文献   

16.
Linear surface gravity waves on Maxwell viscoelastic fluids with finite depth are studied in this paper. A dispersion equation describing the spatial decay of the gravity wave in finite depth is derived. A dimensionless memory (time) number 0 is introduced. The dispersion equation for the pure viscous fluid will be a specific case of the dispersion equation for the viscoelastic fluid as θ=0. The complex dispersion equation is numerically solved to investigate the dispersion relation. The influences of θ and water depth on the dispersion characteristics and wave decay are discussed. It is found that the role of elasticity for the Maxwell fluid is to make the surface gravity wave on the Maxwell fluid behave more like the surface gravity wave on the inviscid fluid.  相似文献   

17.
A numerical approach is introduced to solve the viscoelastic flow problem of filling and post-filling in injection molding. The governing equations are in terms of compressible, non-isothermal fluid, and the constitutive equation is based on the Phan–Thien–Tanner model. By introducing some hypotheses according to the characteristics of injection molding, a quasi-Poisson type equation about pressure is derived with part integration. Besides, an analytical form of flow-induced stress is also generalized by using the undermined coefficient method. The conventional Galerkin approach is employed to solve the derived pressure equation, and the ‘upwind’ difference scheme is used to discrete the energy equation. Coupling is achieved between velocity and stress by super relax iteration method. The flow in the test mold is investigated by comparing the numerical results and photoelastic photos for polystyrene, showing flow-induced stresses are closely related to melt temperatures. The filling of a two-cavity box is also studied to investigate the viscoelastic effects on real injection molding.  相似文献   

18.
 It is known that the zero shear viscosity of a polydisperse melt of linear polymers depends only on its weight-average molecular weight, whereas its recoverable compliance increases with polydispersity. These facts can be exploited to design model viscoelastic fluids using mixtures of short and long chains of the same homopolymer (bidisperse mixtures). The composition required to obtain a bidisperse mixture with the desired viscosity can be calculated from the molecular weights of the components, and the known relationship between viscosity and weight-average molecular weight. The terminal viscoelastic properties of such a bidisperse mixture are estimated from theoretical predictions for the compliance of bidisperse mixtures available in the literature. These predictions suggest that the elasticity of bidisperse mixtures can be varied independent of their viscosity by appropriately choosing the molecular weights of their components and their composition. This strategy is applied here on bidisperse mixtures of monodisperse 1,4-polyisoprene, which are shown to display second-order fluid behavior over a reasonable range of accessible shear rates. The same procedure is also applied to mixtures of PDMS polymers which are not particularly monodisperse. Rheological measurements show that the elasticity of these polyisoprene and PDMS mixtures can indeed be varied without changing their viscosity. Such materials are ideally suited to study structure-rheological properties relationships in blends of immiscible viscoelastic fluids. Received: 12 April 2001 Accepted: 28 August 2001  相似文献   

19.
An analysis is made of the steady two-dimensional stagnation-point flow of an incompressible viscoelastic fluid over a flat deformable surface when the surface is stretched in its own plane with a velocity proportional to the distance from the stagnation-point. It is shown that for a viscoelastic conducting fluid of short memory (obeying Walters’ Bʹ model), a boundary layer is formed when the stretching velocity of the surface is less than the inviscid free-stream velocity and velocity at a point increases with increase in the Hartmann number. On the other hand an inverted boundary layer is formed when the surface stretching velocity exceeds the velocity of the free stream and the velocity decreases with increase in the Hartmann number. A novel result of the analysis is that the flow near the stretching surface is that corresponding to an inviscid stagnation-point flow when the surface stretching velocity is equal to the velocity of the free stream. Temperature distribution in the boundary layer is found when the surface is held at constant temperature and surface heat flux is determined. It is found that in the absence of viscous and Ohmic dissipation and strain energy in the flow, temperature at a point decreases with increase in the Hartmann number.  相似文献   

20.
Summary  This study provides a general analysis for scattering of a planar monochromatic compressional sound wave by a homogeneous, isotropic, viscoelastic, solid sphere immersed in an unbounded viscous, heat-nonconducting, compressible fluid. The dynamic viscoelastic properties of the spherical scatterer and the viscosity of the surrounding fluid are rigorously taken into account in the solution of the acoustic-scattering problem. Havriliak–Negami model for viscoelastic material behaviour along with the appropriate wave-harmonic field expansions and the pertinent boundary conditions are employed to develop a closed-form solution in form of infinite series. Subsequently, the associated acoustic quantities such as the scattered far-field pressure directivity pattern, scattered intensity distribution, differential scattering cross section, and the acoustic radiation force are evaluated for given sets of viscoelastic material properties. Numerical results clearly indicate that, in addition to the traditional fluid viscosity-related mechanisms, the dynamic viscoelastic properties of the solid obstacle can be of major significance in sound scattering. Limiting cases are examined and fair agreements with well-known solutions are established. Received 15 January 2002; accepted for publication 2 July 2002 The authors wish to sincerely thank professors Daniel Levesque, Roderic Lakes, Yves Berthelot, S. Temkin, and Andrei Dukhin for valuable and productive consultations on dynamic theory of viscoelasticity and acoustics of (thermo)viscous media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号