首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The title compounds, C8H10O2, (I), and C12H14O2, (II), occurred as by‐products in the controlled synthesis of a series of bis­(gem‐alkynols), prepared as part of an extensive study of synthon formation in simple gem‐alkynol derivatives. The two 4‐(gem‐alkynol)‐1‐ones crystallize in space group P21/c, (I) with Z′ = 1 and (II) with Z′ = 2. Both structures are dominated by O—H?O=C hydrogen bonds, which form simple chains in the cyclo­hexane derivative, (I), and centrosymmetric dimers, of both symmetry‐independent mol­ecules, in the cyclo­hexa‐2,5‐diene, (II). These strong synthons are further stabilized by C[triple‐bond]C—H?O=C, Cmethylene—H?O(H) and Cmethyl—H?O(H) interactions. The direct intermolecular interactions between donors and acceptors in the gem‐alkynol group, which characterize the bis­(gem‐alkynol) analogues of (I) and (II), are not present in the ketone derivatives studied here.  相似文献   

2.
3.
The structures of the title compounds, C15H13N3O4, (I), and C16H15N3O5 [IUPAC name: ethyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(3‐nitro­phenyl)‐4H‐pyrano‐3‐carboxyl­ate], (II), are very similar, with the heterocyclic rings adopting boat conformations. The pseudo‐axial m‐nitro­phenyl substituents are rotated by 84.0 (1) and 98.7 (1)° in (I) and (II), respectively, with respect to the four coplanar atoms of the boat. The dihedral angles between the phenyl rings and nitro groups are 12.1 (2) and 8.4 (2)° in (I) and (II), respectively. The two compounds have similar patterns of intermolecular N—H?O and N—H?N hydrogen bonding, which link mol­ecules into infinite tapes along b .  相似文献   

4.
rac‐5‐Diphenylacetyl‐2,2,4‐trimethyl‐2,3,4,5‐tetrahydro‐1,5‐benzothiazepine, C26H27NOS, (I), and rac‐5‐formyl‐2,2,4‐trimethyl‐2,3,4,5‐tetrahydro‐1,5‐benzothiazepine, C13H17NOS, (II), are both characterized by a planar configuration around the heterocyclic N atom. In contrast with the chair conformation of the parent benzothiazepine, which has no substituents at the heterocyclic N atom, the seven‐membered ring adopts a boat conformation in (I) and a conformation intermediate between boat and twist‐boat in (II). The molecules lack a symmetry plane, indicating distortions from the perfect boat or twist‐boat conformations. The supramolecular architectures are significantly different, depending in (I) on C—H...O interactions and intermolecular S...S contacts, and in (II) on a single aromatic π–π stacking interaction.  相似文献   

5.
6.
The title compounds, [Sn(C6H5)2(C5H4S5)] and [Sn(C5H4S5)2], respectively, are of interest because they can be regarded as intermediate in nature between chelates and heterocyclic compounds containing the C3S5 fragment. In contrast with the essentially normal bond lengths and angles within the mol­ecules, the molecular conformations are somewhat unexpected, as are the intermolecular contacts found in the case of the latter compound.  相似文献   

7.
The isomorphous structures of the title molecules, 4‐amino‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐3‐iodo‐1H‐pyrazolo‐[3,4‐d]pyrimidine, (I), C10H12IN5O3, and 4‐amino‐3‐bromo‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐1H‐pyrazolo[3,4‐d]­pyrimidine, (II), C10H12BrN5O3, have been determined. The sugar puckering of both compounds is C1′‐endo (1′E). The N‐­glycosidic bond torsion angle χ1 is in the high‐anti range [?73.2 (4)° for (I) and ?74.1 (4)° for (II)] and the crystal structure is stabilized by hydrogen bonds.  相似文献   

8.
15‐Cyano‐12‐oxopentadecano‐15‐lactone was synthesized in 59% total yield starting from 2‐nitrocyclododecanone by Michael addition to acrylaldehyde, followed by reaction with trimethylsilylcyanide, hydrolysis, ring‐expansion, and Nef reaction. A two‐step, one‐pot synthesis of intermediate 2‐hydroxy‐4‐(1‐nitro‐2‐oxycyclododecyl)butanenitrile from 3‐(1‐nitro‐2‐oxocyclododecyl)propanal was developed and the conditions for the Nef reaction were studied. 15‐Cyano‐12‐oxopentadecano‐15‐lactam was synthesized in 40% total yield starting from 2‐nitrocyclododecanone by Michael addition to acrylaldehyde, followed by Strecker reaction, ring‐expansion, and Nef reaction. The conditions for the Strecker and Nef reactions were studied. The structures of the target compounds, intermediates, and by‐product were characterized by IR, 1H‐ and 13C‐NMR, and elemental analysis or MS.  相似文献   

9.
The model morpholine‐1‐carbothioic acid (2‐phenyl‐3H‐quinazolin‐4‐ylidene) amide (1) reacts with phenacyl bromides to afford N4‐(5‐aryl‐1,3‐oxathiol‐2‐yliden)‐2‐phenylquinazolin‐4‐amines (4) or N4‐(4,5‐diphenyl‐1,3‐oxathiol‐2‐yliden)‐2‐phenyl‐4‐aminoquinazoline ( 5 ) by a thermodynamically controlled reversible reaction favoring the enolate intermediate, while the 4‐[4‐aryl‐5‐(2‐phenylquinazolin‐4‐yl)‐1,3‐thiazol‐2‐yl]morpholine ( 8 ) was produced by a kinetically controlled reaction favoring the C‐anion intermediate. 1H nmr, 13C nmr, ir, mass spectroscopy and x‐ray identified compounds ( 4 ), ( 5 ) and ( 8 ).  相似文献   

10.
N‐(2‐Bromoethyl)‐4‐piperidino‐1,8‐naphthalimide, C19H19BrN2O2, (I), and N‐(3‐bromopropyl)‐4‐piperidino‐1,8‐naphthalimide, C20H21BrN2O2, (II), are an homologous pair of 1,8‐naphthalimide derivatives. The naphthalimide units are planar and each piperidine substituent adopts a chair conformation. This study emphasizes the importance of π‐stacking interactions, often augmented by other contacts, in determining the crystal structures of 1,8‐naphthalimide derivatives.  相似文献   

11.
A new kind of UV stabilizers, 1‐(3′‐(benzotriazol‐2″‐yl)‐4′‐hydroxy‐benzoyl)‐3‐methyl‐5‐pyrazolones (1a‐d), was synthesized with the aim to bind them chemically to certain polymers. The reaction of 1d with substituted benzaldehydes 4 in the molten state at 150°C and in the solid state at room temperature produced the condensation products l‐(3′‐(5″‐chlorobenzotriazol‐2″‐yl)‐4′‐hydroxyl‐5′‐chlorobenzoyl)‐3‐methyl‐4‐arylmethylene‐5‐pyrazolones (2) and 4,4′‐arylmethylene‐bis [1‐(3′‐(5″‐chloro‐benzotriazol‐2″‐yl)‐4′‐hydroxy‐5′‐chloro‐benzoyl)‐3‐methyl‐5‐pyrazolone] s (3), respectively, as the major product. On the other hand, the reaction of 1d with 4 at 50°C in chloroform solution proceeded non‐selectively to give a mixture of 2 and 3.  相似文献   

12.
This study of 3‐(5‐phenyl‐1,3,4‐oxadiazol‐2‐yl)‐2H‐chromen‐2‐one, C17H10N2O3, 1 , and 3‐[5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazol‐2‐yl]‐2H‐chromen‐2‐one, C16H9N3O3, 2 , was performed on the assumption of the potential anticancer activity of the compounds. Three polymorphic structures for 1 and two polymorphic structures for 2 have been studied thoroughly. The strongest intermolecular interaction is stacking of the `head‐to‐head' type in all the studied crystals. The polymorphic structures of 1 differ with respect to the intermolecular interactions between stacked columns. Two of the polymorphs have a columnar or double columnar type of crystal organization, while the third polymorphic structure can be classified as columnar‐layered. The difference between the two structures of 2 is less pronounced. Both crystals can be considered as having very similar arrangements of neighbouring columns. The formation of polymorphic modifications is caused by a subtle balance of very weak intermolecular interactions and packing differences can be identified only using an analysis based on a study of the pairwise interaction energies.  相似文献   

13.
Condensation of 4‐methylsulfonylaniline with aryl aldehyde in ethanol‐tetrahydrofuran afforded the imino compound 3 . 1,3‐Cycloaddtion of diazomethane with compound 3 followed by oxidazation of the triazoline 4 with potassium permanganate gave 1‐(4‐methylsulfonylphenyl)‐5‐aryl‐1,2,3‐triazoles 5 . Similarly, condensation of 4‐(N,N‐dibenzylaminosulfonyl)aniline with aryl aldehyde followed by 1,3‐cycloaddition of diazomethane with the imino compound 11 and the subsequent oxidation of triazoline 12 with potassium permanganate yielded the triazole 13 . Debenzylation of compound 13 with sulfuric acid gave the desired compound 1‐(4‐aminosulfonylphenyl)5‐aryl‐1,2,3‐triazoles 14 .  相似文献   

14.
The title compounds, C20H20FNO6 and C20H19Cl2NO6, respectively, may exhibit bioactivity. In these compounds, the pyrrolidine ring adopts a conformation intermediate between envelope and half‐chair. Only one of the two ethoxy­carbonyl side chains is nearly planar. Centrosymmetric pairs are formed, and the crystal structure is stabilized by weak C—H⋯O hydrogen bonds and van der Waals interactions.  相似文献   

15.
A series of novel title compounds have been designed and synthesized by a multi‐step reaction, the stereochemistry of the reaction was investigated, the structures of all compounds prepared have been confirmed by 1H NMR, IR, EI‐MS spectroscopy and elemental analysis. The crystal structures of cis 6b and trans 6b were determined by single crystal X‐ray diffraction. The results of preliminary bioassay indicate that some compounds possess a certain extent inhibition effect against aphides at the concentration of 250 ppm.  相似文献   

16.
17.
2‐Amino‐6‐(3‐methyl‐5‐oxo‐1‐phenyl‐2‐pyrazolin‐4‐yl)‐4‐phenylpyridine‐3‐carbonitrile (1) obtained by the reaction of 4‐(1‐iminoethyl)‐3‐methyl‐1‐phenyl‐2‐pyrazolin‐5‐one with benzylidenemalononitrile, was reacted with triethyl orthoformate followed by hydrazine hydrate, acetic anhydride, acetyl chloride, alkyl halides, benzoyl chloride, sulphuric acid followed by formamide, phenyl isothiocyanate, carbon disulphide followed by ethyl iodide, formamide, trichloroacetonitrile, nitrous acid, giving new oxopyrazolinylpyridines ( 2,3,5,6,8,9,10 ) and related pyridopyrimidines ( 11‐17 ) and pyridotriazine ( 18 ).  相似文献   

18.
The 1,5‐benzodiazepine ring system exhibits a puckered boat‐like conformation for all four title compounds [4‐(2‐hydroxyphenyl)‐2‐phenyl‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C21H18N2O, (I), 2‐(2,3‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (II), 2‐(3,4‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (III), and 2‐(2,5‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (IV)]. The stereochemical correlation of the two C6 aromatic groups with respect to the benzodiazepine ring system is pseudo‐equatorial–equatorial for compounds (I) (the phenyl group), (II) (the 2,3‐dimethoxyphenyl group) and (III) (the 3,4‐dimethoxyphenyl group), while for (IV) (the 2,5‐dimethoxyphenyl group) the system is pseudo‐axial–equatorial. An intramolecular hydrogen bond between the hydroxyl OH group and a benzodiazepine N atom is present for all four compounds and defines a six‐membered ring, whose geometry is constant across the series. Although the molecular structures are similar, the supramolecular packing is different; compounds (I) and (IV) form chains, while (II) forms dimeric units and (III) displays a layered structure. The packing seems to depend on at least two factors: (i) the nature of the atoms defining the hydrogen bond and (ii) the number of intermolecular interactions of the types O—H...O, N—H...O, N—H...π(arene) or C—H...π(arene).  相似文献   

19.
The crystal structures of 2,2‐dimethyl‐5‐nitroso‐1,3‐dioxan‐5‐yl benzoate, C13H15NO5, (I), 2,2‐dimethyl‐5‐nitroso‐1,3‐dioxan‐5‐yl 4‐chlorobenzoate, C13H14ClNO5, (II), and 5‐nitroso‐1,3‐dioxan‐5‐yl 4‐chlorobenzoate, C11H11NO5, (III), have been determined in order to gain insight into the conformational preference of α‐benzoyloxynitroso. Unfavourable 1,3‐diaxial interactions force (I) and (II) to crystallize in the 2,5 twist‐boat conformation, whereas compound (III), lacking this destabilizing interaction, crystallizes in the chair conformation.  相似文献   

20.
The title compounds, C18H21NO and C18H21NS, in their enantiomerically pure forms are isostructural with the enantiomerically pure 4‐(4‐hydroxyphenyl)‐2,2,4‐trimethylchroman and 4‐(2,4‐dihydroxyphenyl)‐2,2,4‐trimethylchroman analogues and form extended linear chains via N—H...O or N—H...S hydrogen bonding along the [100] direction. The absolute configuration for both compounds was determined by anomalous dispersion methods with reference to both the Flack parameter and, for the light‐atom compound, Bayesian statistics on Bijvoet differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号