首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this work, a series of novel solid-type α-Al2O3-containing polyacrylonitrile (PAN)-based composite polymer electrolytes (CPE) with high conductivity and high mechanical property at room temperature has been prepared. The effect of the addition of α-Al2O3 on the properties of the PAN-based composite polymer electrolyte has been analyzed. The best conductivities obtained at room temperature is 5.7×10−4 S cm−1 from the CPE with 7.5 wt.% α-Al2O3 and 0.6 LiClO4 per PAN repeat unit. The stress–strain test result indicates that the membranes prepared possess high yield stress (73 kg cm−2) suitable for serving as separators in the solid-state lithium and lithium ion batteries and high yield elongation (225%) pliable to form good interface with electrodes. Also discussed are the effects of the addition of the ceramics on the interactions in the system and the possible conduction mechanism.  相似文献   

2.
应用晶体场理论和不可约张量算符方法构造了3d2/3d8态离子在C3v对称晶场中包含自旋-轨道相互作用、自旋-自旋相互作用、自旋-其它轨道相互作用和其它轨道-其它轨道相互作用四种微观磁效应的45阶可完全对角化的能量哈密顿矩阵.利用该矩阵,计算了V3+∶α-Al2O3和Ni2+∶α-Al2O3晶体的光谱精细结构、晶体局域结构和零场分裂参量,研究了掺入两种互补态离子Ni2+和V3+对同种晶体的光谱精细结构、晶体局域结构和零场分裂参量的影响,理论计算值和实验值相符.研究发现:掺杂没有改变晶体的光谱精细结构和能级分裂条数,但改变了能级间距|掺杂也没有改变晶体的对称性,但使晶体局域结构发生了一定程度的畸变| Ni2+∶α-Al2O3晶体局域结构的伸长畸变量大于V3+∶α-Al2O3晶体,键角的变化量小于V3+∶α-Al2O3晶体.  相似文献   

3.
Accurate values for the27Al chemical shielding anisotropy (CSA) are reported for sapphire (α-Al2O3). The values (δσ= −17.3 ± 0.6 ppm, ησ= 0.03 ± 0.06) are obtained from single-crystal27Al NMR and appear to be the first convincing determination of an27Al CSA.  相似文献   

4.
谭鑫鑫  吕树臣 《光子学报》2014,39(7):1169-1175
采用共沉淀法制备了纳米晶ZrO2-Al2O3∶Er3+发光粉体.所制备的粉体室温下具有Er3+离子特征荧光发射,主发射在绿光,其中位于547 nm、560 nm的绿光最强,并得出稀土离子与基质之间有能量传递.对不同煅烧温度下的样品研究表明:因不同温度下所制得的样品晶相不同.研究了纳米晶ZrO2-Al2O3∶Er3+及ZrO2-Al2O3∶Er3+/Yb3+的上转换发光,并分析了上转换的跃迁机制.发现ZrO2-Al2O3∶Er3+的绿光为双光子过程,而ZrO2-Al2O3∶Er3+、Yb3+的上转换光谱中,红光和绿光也为双光子过程,而极弱的蓝光为三光子过程.讨论了Er3+的浓度猝灭现象.最适宜掺杂浓度的原子分数为2%(Er3+/Zr4+).  相似文献   

5.
We report perturbed-angular-correlation (PAC) experiments on 181Hf(→181Ta)-implanted corundum Cr2O3 powder samples in order to determine the magnitude and symmetry of the electric-field gradient (EFG) tensor at Ta donor impurity sites of this semiconductor. These results are analyzed in the framework of ab initio full-potential augmented-plane wave plus local orbitals (FP−APW+lo) calculations. The results are also compared with EFG results coming from PAC experiments in isomorphous α-Al2O3 and α-Fe2O3 doped with 111In→111Cd and 181Hf→181Ta tracers. This combined analysis enables us to quantify the magnitude of the lattice relaxations induced by the presence of the impurity and to determine the charge state of the impurity donor level introduced by Ta in the band gap of the semiconductor.  相似文献   

6.
The conductivity and elastic modulus of (CeO2)1 − x(YO1.5)x for x values of 0.10, 0.15, 0.20, 0.30, and 0.40 were investigated by experiments and molecular dynamics simulations. The calculated conductivity exhibited a maximum value at approximately 15 mol% Y2O3; this trend agreed with that of the experimental results. In order to clarify the reason for the occurrence of the maximum conductivity, the paths for the transfer of oxygen vacancies were counted. The numerical result revealed that as the content of Y2O3 dopant increases, the number of paths for the transfer of oxygen vacancies decreases, whereas the number of oxygen vacancies for conductivity increases. Thus, the trade-off between the increase in the number of vacancy sites and the decrease in the vacancy transfer was considered to be the reason for the maximum conductivity occurring at the Y2O3 dopant content of approximately 15 mol%. The calculated elastic modulus also exhibited a minimum value at approximately 20 mol% Y2O3, which also agreed with the experimental results. It was shown that the Y–O–Y bonding energy increased with the increasing content of Y2O3 dopant. Thus, the trade-off between the increase in the number of vacancy sites and that in the Y–O–Y bonding energy was considered to be the reason for the minimum elastic modulus occurring at the Y2O3 dopant content of approximately 20 mol%.  相似文献   

7.
We perform DFT calculations to investigate the redox and formate mechanisms of water–gas-shift (WGS) reaction on Au/CeO2 catalysts. In the redox mechanism, we analyze all the key elementary steps and find that the OH cleavage is the key step. Three possible pathways of OH cleavage are calculated: (1) OHad+*→Had+Oad; (2) Had+OHad→H2(g)+Oad+*; and (3) OHad+OHad→2Oad+H2(g) (*′: the free adsorption sites on the oxides; ad′: adsorption on the metal; ad″: adsorption on the oxide, respectively). In the formate mechanism, we identify all the possible pathways for the formation and decomposition of surface formates in the WGS reaction. It is found that there is a shortcoming in the redox and formate mechanisms which is related to surface oxygen reproduction. Four possible pathways for producing surface oxygen are studied, and all the barriers of the four pathways are more than 1 eV. Our results suggest that the processes to reproduce surface oxygen in the reaction circle are not kinetically easy.  相似文献   

8.
The glasses with the composition of 37.5Li2O–(25 − x)Fe2O3xNb2O5–37.5P2O5 (mol%) (x = 5,10,15) are prepared, and it is found that the addition of Nb2O5 is effective for the glass formation in the lithium iron phosphate system. The glass–ceramics consisting of Nasicon-type Li3Fe2(PO4)3 crystals with an orthorhombic structure are developed through conventional crystallization in an electric furnace, showing electrical conductivities of 3 × 10− 6 Scm− 1 at room temperature and the activation energies of 0.48 eV (x = 5) and 0.51 eV (x = 10) for Li+ ion conduction in the temperature range of 30–200 °C. A continuous wave Nd:YAG laser (wavelength: 1064 nm) with powers of 0.14–0.30 W and a scanning speed of 10 μm/s is irradiated onto the surface of the glasses, and the formation of Li3Fe2(PO4)3 crystals is confirmed from XRD analyses and micro-Raman scattering spectra. The crystallization of the precursor glasses is considered as new route for the fabrication of Li3Fe2(PO4)3 crystals being candidates for use as electrolyte materials in lithium ion secondary batteries.  相似文献   

9.
We have investigated the growth and electrical properties of crystalline Gd2O3 grown on 6H-SiC(0001) substrates by molecular beam epitaxy. Initially, Gd2O3 islands with hexagonal structure were formed. Further growth resulted in the formation of flat layers in a mixture of [111]-oriented cubic bixbyite and monoclinic structure. The fabricated capacitors with 14 nm Gd2O3 exhibited suitable dielectric properties at room temperature; such as a dielectric constant of ε=22, a leakage current of 10−8 A/cm2@1 V and breakdown fields >4.3 MV/cm.  相似文献   

10.
Uniformly distributed PbTiO3 nanodots were successfully prepared by phase separation approach. A precursor sol film was first spin-coated on Si wafer and then spontaneously separated into two distinct phases owing to the Marangoni instability. PT nanodots with tailorable size and density were obtained after further heat treatment. X-ray diffraction analysis indicated that these nanodots showed a perovskite structure. An excellent room temperature field emission property of PbTiO3 nanodots was observed: the minimum turn-on voltage was about 5.3 V/μm; while the emission current density reached about 270 μA cm−2 at an applied field of about 9.25 V/μm.  相似文献   

11.
The (Na+) Sternheimer antishielding factor γ (Na+) was determined by 23Na NMR spectroscopy on sodium oxide chloride, Na3OCl. The quadrupolar coupling constant of the sodium ion in Na3OCl was determined to QCC=11.34 MHz, which presents the largest coupling constant of a sodium nucleus observed so far. Applying a simple point charge model, the largest principal value of the electric field gradient at the sodium site was calculated to Vzz=−6.76762·1020 V/m2. From these values we calculated the (Na+) Sternheimer antishielding factor to γ (Na+)=−5.36. In sodium oxide, Na2O, we observed an isotropic chemical shift of δCS=55.1 ppm, referenced to 1 M aqueous NaCl (δ=0 ppm).  相似文献   

12.
Lead-free multi-component ceramics (Bi1−xyNa0.925−xyLi0.075)0.5BaxSryTiO3 have been prepared by an ordinary sintering technique and their structure and electrical properties have been studied. All the ceramics can be well-sintered at 1100 °C. X-ray diffraction patterns shows that Li+, Ba2+ and Sr2+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure, and a morphotropic phase boundary (MPB) is formed at 0.04 < x < 0.08. As compared to pure Bi0.5Na0.5TiO3 ceramic, the coercive field EC of the ceramics decreases greatly and the remanent polarization Pr of the ceramics increases significantly after the formation of the multi-component solid solution. Due to the MPB, lower EC and higher Pr, the piezoelectricity of the ceramics is greatly improved. For the ceramics with the compositions near the MPB (x = 0.04–0.08 and y = 0.02–0.04), piezoelectric coefficient d33 = 133–193 pC/N and planar electromechanical coupling factor kP = 16.2–32.1%. The depolarization temperature Td reaches a minimum value near the MPB. The temperature dependences of the ferroelectric and dielectric properties suggest that the ceramics may contain both the polar and non-polar regions at temperatures near/above Td.  相似文献   

13.
The role of charge carriers in ZnO2/CuO2 planes of Cu0.5Tl0.5Ba2Ca3Cu4−yZnyO12−δ material in bringing about superconductivity has been explained. Due to suppression of anti-ferromagnetic order with Zn 3d10 (S=0) substitution at Cu 3d9 sites in the inner CuO2 planes of Cu0.5Tl0.5Ba2Ca3Cu4O12−δ superconductor, the distribution of charge carriers becomes homogeneous and optimum, which is evident from the enhanced superconductivity parameters. The decreased c-axis length with the increase of Zn doping improves interlayer coupling and hence the three dimensional (3D) conductivity in the unit cell is enhanced. Also the softening of phonon modes with the increased Zn doping indicates that the electron–phonon interaction has an essential role in the mechanism of high-Tc superconductivity in these compounds.  相似文献   

14.
Ba(Ti1−x,Nix)O3 thin films were prepared on fused quartz substrates by a sol–gel process. X-ray diffraction and Raman scattering measurements showed that the films are of pseudo-cubic perovskite structure with random orientation and the change of lattice constant caused by Ni-doping with different concentrations is very small. Optical transmittance spectra indicated that Ni-doping has an obvious effect on the energy band structure. The energy gap of Ba(Ti1−x,Nix)O3 decreased linearly with the increase of Ni concentration. It indicates that the adjusting of band gap can be achieved by controlling the Ni-doping content accurately in Ba(Ti1−x,Nix)O3 thin films. This has potential application in devices based on ferroelectric thin films.  相似文献   

15.
单丹  朱珺钏  金灿  陈小兵 《物理学报》2009,58(10):7235-7240
采用了传统的固相烧结工艺,制备了不同Zr和Hf掺杂量的SrBi4Ti4-xZrxO15x=000,003, 006,010,020)和SrBi4Ti4-xHfxO15x=000,0005, 0015,0030,0060)的陶瓷 关键词: 4Ti4-xZrxO15')" href="#">SrBi4Ti4-xZrxO15 4Ti4-xHfxO15')" href="#">SrBi4Ti4-xHfxO15 铁电性能 介电性能  相似文献   

16.
Effects of Ar+ ion-beam irradiation on solid-phase growth of β-FeSi2 have been investigated. Fe (10 nm)/Si structures were irradiated with 25 keV Ar+ (5.0×1015 cm−2) at a temperature of 25°C (sample A) or 400°C (sample B), and subsequently annealed at 800°C. A reference was obtained after annealing without irradiation (sample C). X-ray diffraction results indicated that β-FeSi2 was formed after annealing at 800°C for 5 h, and the formation rate was the fastest for sample A and the slowest for sample C, i.e., A>BC. However, Auger electron spectroscopy measurements showed that atomic mixing at Fe/Si interface before annealing was B>AC. These results suggested that amorphization of Si substrate, in addition to atomic mixing, enhanced the solid-phase growth of β-FeSi2, which was confirmed experimentally. Moreover, a direct band gap of 0.89 eV was observed for the sample with pre-amorphization by the Fourier-transform infrared (FT-IR) spectroscopy measurements. These enhancement effects were attributed to that the phase transition to β-FeSi2 was accelerated by atomic arrangement induced during annihilation of excess vacancies. These enhancement effects can be utilized for nano-fabrication of β-FeSi2 by using focused ion-beam irradiation.  相似文献   

17.
The 27Al nuclear magnetic resonance (NMR) response of a series of natural and synthetic corundum (α-Al2O3) samples is studied quantitatively by short-pulse excitation and frequency-stepped adiabatic half-passage (FSAHP). Using on- and off-resonance nutation NMR, it was established that the quadrupole coupling parameters of visible Al is identical in all samples. Remarkably, the relaxation behavior for the aluminum is very different in the various samples and has a marked effect on the quantitative response. In natural corundum samples the 27Al spin-lattice relaxation is very efficient as these samples contain paramagnetic impurities. As a result, however, the full signal could not be recovered, which is attributed to relaxation broadening of spins in the vicinity of these impurities. In synthetic samples, containing no impurities, the full signal could be recovered, although the relaxation behaviour appeared to depend strongly on the preparation method. We observed differences in the spin-lattice relaxation by a factor 20; the longest T1 was observed in a crushed single crystal. This implies that α-Al2O3 can only be used as a standard in quantitative analyses if it has been characterized thoroughly. Furthermore, the effective relaxation behaviour for different types of excitation is studied. Finally, a method to measure the spin-lattice relaxation of half-integer quadrupole nuclei is introduced, using a frequency-stepped adiabatic passage (FSAP) to invert the spin system.  相似文献   

18.
Effect of the deposition temperature (200 and 500 °C) and composition of SmxCe1−xO2−x/2 (x = 0, 10.9–15.9 mol%) thin films prepared by electron beam physical vapor deposition (EB-PVD) and Ar+ ion beam assisted deposition (IBAD) combined with EB-PVD on structural characteristics and morphology/microstructure was investigated. The X-ray photoelectron spectroscopy (XPS) of the surface and electron probe microanalysis (EPMA) of the bulk of the film revealed the dominant occurrence of Ce4+ oxidation state, suggesting the presence of CeO2 phase, which was confirmed by X-ray diffraction (XRD). The Ce3+ oxidation states corresponding to Ce2O3 phase were in minority. The XRD and scanning electron microscopy (SEM) showed the polycrystalline columnar structure and a rooftop morphology of the surface. Effects of the preparation conditions (temperature, composition, IBAD) on the lattice parameter, grain size, perfection of the columnar growth and its impact on the surface morphology are analyzed and discussed.  相似文献   

19.
In this paper, ceramic coatings were prepared on biomedical NiTi alloys by micro-arc oxidation (MAO) in constant voltage mode. The current density-time response was recorded during the MAO process. The microstructure, element distribution and phase composition of the coatings prepared at different MAO treatment times were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), thin-film X-ray diffraction (TF-XRD) and X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the coatings in 0.9% NaCl solution was evaluated by the potentiodynamic polarization test. It is found that the coatings become more compact with increasing the MAO treatment time, and the growth rate of coating decreases. The results of TF-XRD, EDS and XPS indicate that the coatings are composed of a large amount of γ-Al2O3 and a little α-Al2O3, TiO2 and Ni2O3. The Ni content of the coatings is about 3 at.%, which is greatly lower than that of NiTi substrate. The bonding strength of coating-substrate is higher than 40 MPa for all the samples in this study. The corrosion resistance of the coatings is about two orders of magnitude higher than that of the uncoated NiTi alloy.  相似文献   

20.
The dielectric and piezoelectric properties of pyrochlore-free lead zirconate titanate-lead zinc niobate ceramics were investigated systematically as a function of Sr doping. The powders of Pb(1? x )Sr x [0.7(Zr1 / 2Ti1 / 2)–0.3(Zn1 / 3Nb2 / 3)]O3, where x?=?0–0.06 were prepared using the columbite-(wolframite) precursor method. The ceramic materials were characterized using X-ray diffraction, dielectric spectra, hysteresis and electromechanical measurements. The phase-pure perovskite phase of Sr-doped PZN--PZT ceramics was obtained over a wide compositional range. The results showed that the optimized electrical properties were also achieved at composition x?=?0.0, which were K P?=?0.69, d 33?=?670?pC?N?1, P r?=?31.9?µC?cm?2 and εrmax?=?18600. Maximum dielectric constant values of the systems decreased rapidly with increasing Sr concentration. Moreover, with increasing Sr concentration dielectric constant versus temperature curves become gradually broader. The diffuseness parameter increased significantly with Sr doping. Furthermore, Sr doping has been shown to produce a linear reduction in the transition temperature (T m)?=?294.1–12.7x°C with concentration (x). Sr shifts the transition temperature of this system at a rate of 12.7°C?mol?1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号