首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
pH响应型纳米载体因具有智能的酸敏或碱敏释药性能,已成为当前一类重要的多功能纳米载体,并得到了研究人员的广泛关注。特别是酸敏性纳米载体,可用于肿瘤弱酸微环境的药物控释,因而对药物的定点释放和癌症的靶向治疗等生物医学应用发挥了积极作用。本文综述了近年来各类pH响应型纳米载体的典型合成方法,系统地介绍了共价键、分子间作用力以及物理结构变化3种方式引发的pH响应释药机制。深入阐述了pH响应型纳米载体的载药性能、体外释药性能、体外细胞毒性、体内抗癌性能及体内分布性能,并详细列举了近年来pH响应型纳米载体的各类实验参数,进而为pH响应型纳米载体的深入研究提供了方法学的借鉴和性能参考。  相似文献   

2.
Multidrug resistance (MDR) is regarded as a main obstacle for effective chemotherapy, and P-glycoprotein (P-gp)-mediated drug efflux has been demonstrated to be the key factor responsible for MDR. In this study, a novel pH-responsive hybrid drug delivery system was developed by conjugating d -α-tocopheryl polyethylene glycol 1000 succinate (TPGS), a kind of P-gp inhibitor, on the surface of laponite nanodisks to overcome MDR. The prepared LM-TPGS display excellent colloidal stability, a high encapsulation efficiency of doxorubicin (DOX), and a pH-responsive drug release profile. In vitro experiments verified that LM-TPGS/DOX could exhibit significantly enhanced therapeutic efficacy in treating DOX-resistant breast cancer cells (MCF-7/ADR) through inhibiting the activity of P-gp-mediated drug efflux and effectively accumulating DOX within cancer cells. In vivo results revealed that LM-TPGS/DOX outstandingly suppressed MCF-7/ADR tumors with low side effects. Therefore, the high drug payload, enhanced inhibition efficacy to drug-resistant cells, and low side effects make the LM-TPGS/DOX a promising nanoplatform to reverse MDR for effective chemotherapy.  相似文献   

3.
This study involved the construction of self-assembled nanoparticles from novel pH-sensitive amphiphilic polyphosphazenes. These nanoparticles provide fast pH-responsive drug release and have the capability to disturb endosomal membranes. The polymers were prepared by linking N,N-diisopropylethylenediamine (DPA) onto a backbone of PEGylated polyphosphazene. In vitro cell viability measurements demonstrated the superior efficacy of these pH-responsive nanoparticles over free doxorubicin (Dox): the IC50 was over 60 times lower than that of free Dox against a Dox-resistant cell line. Using flow cytometry and confocal microscopy, the further investigation of the intracellular distribution of Dox and fluorescent probes provided evidence that, upon internalization by cells through endocytic pathways, the pH-sensitive polymer would disrupt membranes of endosomal compartments, releasing the cargo drugs into the cytoplasm in a burst-like manner. This resulted in reduced likelihood of drug efflux via exocytosis, and reversal of the drug resistance of the tumor cells. Generally, the pH-responsive nanoparticles designed in this study have achieved their potential as a drug delivery system for tumor therapy applications.  相似文献   

4.
A kind of novel fluorine-containing pH-responsive core/shell microgels poly(DMAEMA-co-HFMA)-g-PEG were prepared via surfactant-free emulsion polymerization using water as the solvent. The well-defined chemical structure of the copolymers was characterized by FTIR, 1H-NMR, 19F-NMR, and elemental analysis. The microgel particles were studied by florescence probe technique, dynamic light scattering, and zeta potential measurement; the microgels displayed a significant pH-responsive behavior. Furthermore, the cytotoxicity assay indicated that the copolymer microgels had low toxicity, and 5-FU-loaded microgels offered a certain killing potency against cancer cells. In addition, the drug loading and in vitro drug release demonstrated that 5-FU was successfully incorporated into polymeric microgels, and the drug-loaded microgels showed a marked pH-dependent drug release behavior. This study suggests that the poly(DMAEMA-co-HFMA)-g-PEG microgels play an important role in the release mechanism stimulated by the change in the pH and have potential applications as a controlled drug release carrier.  相似文献   

5.
Electrospinning is a versatile method for producing continuous nanofibers. It has since become an easy and cost-effective technique in the manufacturing process and drawn keen interests in most biomedical field applications. Nanofibers have garnered great attention in nanomedicine due to their resemblance with the extracellular matrix (ECM). Like nanoparticles, its unique characteristics of higher surface-to-volume ratio and the tunability of the polymers utilizing nanofiber have increased the efficiency in encapsulation and drug-loading capabilities. Smart or “stimuli-responsive” polymers have shown particular fascination in controlled release, where their ability to react to minor changes in the environment, such as temperature, pH, electric field, light, or magnetic field, distinguishes them as intelligent. Polymers are a popular material for the design of drug delivery carriers; consequently, various types of drugs, including antiviral, proteins, antibiotics, DNA and RNA, are successfully encapsulated in the pH-dependent nanofibers with smart polymers which is a polymer that can respond to change such as pH change, temperature. In this minireview, we discuss applications of smart electrospun pH-responsive nanofibers in the emerging biomedical developments which includes cancer drug targeting, oral controlled release, wound healing and vaginal drug delivery.  相似文献   

6.
使用纳米粒子进行疾病的诊断和治疗是当前研究的一个热点. 由于受到黏液层的阻碍, 纳米粒子对于黏膜上皮细胞的进入效果不佳, 从而限制了其对黏膜相关疾病的诊断和治疗. 本文设计合成了一种具有黏惰性的酸敏感纳米粒子(MSNs-pCBMA-DMMA), 可有效穿透黏液层进入黏膜上皮细胞. 首先采用溶胶-凝胶法合成了表面氨基化的介孔二氧化硅纳米粒子(MSNs-NH2), 然后通过原子转移自由基聚合法(ATRP)使两性离子羧基甜菜碱甲基丙烯酸酯(CBMA)在MSNs-NH2表面上聚合形成聚羧基甜菜碱甲基丙烯酸酯(pCBMA), 获得惰性化的粒子(MSNs-pCBMA), 最后将酸响应性分子2,3-二甲基马来酸酐(DMMA)修饰于MSNs-pCBMA表面, 制备了MSNs-pCBMA-DMMA. 场发射透射电子显微镜(TEM)、 傅里叶变换红外光谱(FTIR)、 氢核磁共振波谱(1H NMR)和纳米粒度Zeta电位测定仪等分析结果表明, 本文合成了MSNs-pCBMA-DMMA, 且粒子表面电位随pH值降低显著增加, 在pH=7.4~5.7范围内具有酸敏感能力. Transwell?小室实验表明, pCBMA的接枝提高了粒子在模拟黏液中的渗透速率, 而DMMA的修饰则进一步增强了粒子的扩散能力, 4 h内MSNs-pCBMA-DMMA的模拟黏液渗透率达到16.3%, 为MSNs-pCBMA的1.9倍, MSNs-NH2的3倍, 而以MSNs-NH2的表观渗透系数(Papp)为标准计算得到的MSNs-pCBMA-DMMA的相对表观渗透系数达到了2.96. 细胞毒性试验验证MSNs-pCBMA-DMMA粒子的生物安全性良好. 细胞摄取试验表明, 相比于其它粒子MSNs-pCBMA-DMMA能够更快的被黏膜上皮细胞摄取. 本文所构建的纳米粒子能够快速渗透黏液且易于被黏膜上皮细胞摄取, 为其应用于黏膜相关疾病的活体诊断和治疗提供了基础.  相似文献   

7.
刘志勇 《高分子科学》2017,35(8):924-938
Well-defined p H-responsive poly(ε-caprolactone)-graft-β-cyclodextrin-graft-poly(2-(dimethylamino)ethylmethacrylate)-co-poly(ethylene glycol) methacrylate amphiphilic copolymers(PCL-g-β-CD-g-P(DMAEMA-co-PEGMA)) were synthesized using a combination of atom transfer radical polymerization(ATRP),ring opening polymerization(ROP) and "click" chemistry.Successful synthesis of polymers was confirmed by Fourier transform infrared spectroscopy(FTIR),proton nuclear magnetic resonance(1H-NMR),and gel permeation chromatography(GPC).Then,the polymers could selfassemble into micelles in aqueous solution,which was demonstrated by dynamic light scattering(DLS) and transmission electron microscopy(TEM).The p H-responsive self-assembly behavior of these copolymers in water was investigated at different p H values of 7.4 and 5.0 for controlled doxorubicin(DOX) release,and these results revealed that the release rate of DOX could be effectively controlled by altering the p H,and the release of drug loading efficiency(DLE) was up to 88%(W/W).CCK-8 assays showed that the copolymers had low toxicity and possessed good biodegradability and biocompatibility,whereas the DOX-loaded micelles remained with high cytotoxicity for He La cells.Moreover,confocal laser scanning microscopy(CLSM) images revealed that polymeric micelles could actively target the tumor site and the efficient intracellular DOX release from polymeric micelles toward the tumor cells further confirmed the anti-tumor effect.The DOX-loaded micelles could easily enter the cells and produce the desired pharmacological action and minimize the side effect of free DOX.These results successfully indicated that p H-responsive polymeric micelles could be potential hydrophobic drug delivery carriers for cancer targeting therapy with sustained release.  相似文献   

8.
pH-responsive polymers enable the dyeless optical detection of acidic or basic pollutants in air. The characterization of the sorption process and the optimization of the response time of the sensitive layers were high-lighted. The swelling of a pH-responsive polysiloxane induced by sorption of gaseous ammonia was investigated by measurement techniques such as spectroscopic ellipsometry (SE) and infrared spectroscopy (IR). Furthermore, the pH-responsive polymer was applied for the detection of gaseous ammonia using the LED-based reflectometric interference spectroscopy set-up (RIfS4lambda). A limit of detection of 0.30 mg/m3 ammonia and a response time (t90%) of 35 s could be verified. The application of pH-responsive polymers can be a powerful alternative to dye-based optical sensing, since photobleaching or leaching of the sensitive functional unit cannot occur applying this approach, and since the properties of the sensitive layer proved to be very promising.  相似文献   

9.
Numerous nanocarriers with excellent biocompatibilities have been used to improve cancer therapy. However, nonspecific protein adsorption of nanocarriers may block the modified nanoparticles in tumor cells, which would lead to inefficient cellular internalization. To address this issue, pH-responsive polyurethane prodrug micelles with a zwitterionic segment were designed and prepared. The micelle consisted of a zwitterionic segment as the hydrophilic shell and the drug Adriamycin (DOX) as the hydrophobic inner core. As a pH-responsive antitumor drug delivery system, the prodrug micelles showed high stability in a physiological environment and continuously released the drug under acidic conditions. In addition, the pure polyurethane carrier was demonstrated to be virtually non-cytotoxic by cytotoxicity studies, while the prodrug micelles were more efficient in killing tumor cells compared to PEG-PLGA@DOX. Furthermore, the DOX cellular uptake efficiency of prodrug micelles was proved to be obviously higher than the control group by both flow cytometry and fluorescence microscopy. This is mainly due to the modification of a zwitterionic segment with PU. The simple design of zwitterionic prodrug micelles provides a new strategy for designing novel antitumor drug delivery systems with enhanced cellular uptake rates.  相似文献   

10.
The observed rate of drug release from a polymeric drug delivery system is governed by a combination of diffusion, swelling and erosion. It is thus not a simple task to determine the effects of the polymer on the observed drug release rate, because the swelling characteristics of the polymer are inferred from the drug release profile. Here we propose to use solution calorimetry to monitor swelling. Powdered polymer samples (HPMC E4M, K4M, K15M and NaCMC, both alone and in a blend) were dispersed into water or buffer (pH 2.2 and 6.8 McIlvaine citrate buffers) in a calorimeter and the heat associated with the swelling phenomena (hydration, swelling, gelation and dissolution) was recorded. Plots of normalised cumulative heat (i.e. qt/Q, where qt is the heat released up to time t and Q the total amount of heat released) versus time were analysed by the power law model, in which a fitting parameter, n, imparts information on the mechanism of swelling.

For all systems the values of n were greater than 1, which indicated that dissolution occurred immediately following hydration of the polymer. However, while not suitable for determining reaction mechanism, the values of n for each polymer were significantly different and, moreover, were observed to vary both as a function of particle size and dissolution medium pH. Thus, the values of n may serve as comparative parameters. Properties of the polymer blends were observed to be different from those of either constituent and correlated with the behaviour seen for polymer tablets during dissolution experiments. The data imply that solution calorimetry could be used to construct quantitative structure–activity relationships (QSARs) and hence to optimise selection of polymer blends for specific applications.  相似文献   


11.
pH-responsive amphiphilic graft macromolecules consisting of a polyphosphazene backbone, hydrophilic PEG branches and pH-sensitive DPA were successfully synthesized and characterized. The copolymer can self-assemble into vesicles in an aqueous solution with unique inner structure and homogeneously encapsulate both lipophilic and hydrophilic molecules. The pH-dependent structure change of vesicles was also observed by DLS and TEM. Dox-loaded vesicles exhibit a sharp pH-responsive drug release profile and dramatically enhance the cytotoxicity of Dox against Dox-resistant MCF-7/adr cells. These results suggest such vesicles based on pH-responsive polyphosphazene hold great potential for specific drug therapy.  相似文献   

12.
To realize the pH-targeting delivery of antitumor drug cis-dichlorodiammineplatinum(II) (cisplatin, CDDP), a tumor pH-responsive polymer-platinum(II) complex (Suc-HPMHO-CDDP) from carboxyl-modified hyperbranched polyether (Suc-HPMHO) and cisplatin was designed and prepared. Because of the existence of hydrophobic core and ionization of surface carboxylic acid, Suc-HPMHO showed reversible pH-response in aqueous solution, and its responding pH value could be readily adjusted by only changing the degree of carboxylation of Suc-HPMHO. With plenty of terminal carboxyl groups, Suc-HPMHO could form the complex with CDDP by substituting the chloride ions with carboxyls. Methyl tetrazolium (MTT) assay showed that Suc-HPMHO had low cytotoxicity, while Suc-HPMHO-CDDP complex presented a similar antitumor effect with the free CDDP. Under the tumor acidic pH (pH(e)), Suc-HPMHO-CDDP complex deposited around/in cells because of its pH-response. Therefore, the pH-targeting of Suc-HPMHO-CDDP complex to tumor tissue could be realized. All of these results show that the tumor pH-responsive Suc-HPMHO-CDDP complex is a potential pH-targeting drug delivery system in cancer therapy.  相似文献   

13.
This research aims to fabricate and characterize chemically crosslinked CMC/PVP-co-poly (AMPS) based hydrogel for the sustained release of model drug metoprolol tartrate through the free radical polymerization technique. Box-Behnken Design was used to optimize CMC/PVP-co-poly (AMPS) hydrogel by varying the content of reactants such as; polymers (CMC and PVP), monomer (AMPS), and crosslinker (EGDMA). Carboxymethyl cellulose (CMC) was crosslinked chemically with AMPS with a constant ratio of PVP by the ethylene glycol dimethacrylate as the crosslinker in the presence of sodium hydrogen sulfite (SHS)/ammonium peroxodisulfate (APS) as initiators. After developing CMC-based hydrogels using different polymers, monomer, and crosslinker concentrations, this study encompassed dynamic swelling, sol–gel fraction, drug release and chemical characterizations such as FTIR, XRD, TGA, DSC, and SEM. In vitro drug release and swelling were performed at 1.2 and 6.8 pH to determine the sustained release pattern and pH-responsive behavior. These parameters depended on the crosslinker, polymer, and monomer ratios used in the formulation development. XRD, SEM, and FTIR showed the successful grafting of constituents resulting in the formation of a stable hydrogel. DSC and TGA confirmed the thermodynamic stability of the hydrogel. Hydrogel swelling was increased with an increase in the ratio of monomer; however, an increase in the ratio of polymer and crosslinker decreased the hydrogel swelling. In vitro gel fraction and drug release also depended on polymer, monomer, and crosslinker ratios. The fabricated CMC/PVP-co-poly (AMPS) hydrogels constituted a potential system for sustained drug delivery.  相似文献   

14.
pH-responsive polymers enable the dyeless optical detection of acidic or basic pollutants in air. The characterization of the sorption process and the optimization of the response time of the sensitive layers were highlighted. The swelling of a pH-responsive polysiloxane induced by sorption of gaseous ammonia was investigated by measurement techniques such as spectroscopic ellipsometry (SE) and infrared spectroscopy (IR). Furthermore, the pH-responsive polymer was applied for the detection of gaseous ammonia using the LED-based reflectometric interference spectroscopy set-up (RIfS). A limit of detection of 0.30 mg/m3 ammonia and a response time (t90%) of 35 s could be verified. The application of pH-responsive polymers can be a powerful alternative to dye-based optical sensing, since photobleaching or leaching of the sensitive functional unit cannot occur applying this approach, and since the properties of the sensitive layer proved to be very promising.  相似文献   

15.
Water-soluble pH-responsive [60]fullerene end-capped poly(acrylic acid) (PAA85-b-C60) was synthesized using atom-transfer radical polymerization (ATRP) technique. The unusual morphological transformation of the polymer induced by the binding of nonionic surfactant Triton X-100 (TX100) at different degrees of neutralization (alpha) was investigated using isothermal titration calorimetry (ITC), UV-vis spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM). For the 5 mM (monomer concentration) polymer solution at pH < 4, approximately 1.3 mM TX100 binds specifically to C60 domains of the polymeric micelles driven by hydrophobic interaction, which induces a structural transformation of the polymer from a large compound micelle with a radius of 110 nm to a dense precipitated spherical polymer/surfactant complex (PSC) with a radius of 500 nm. The precipitates are resolubilized by a wetting layer of TX100 in excess surfactant (> 1.7 mM in the polymer solution). The binding is significantly weakened and the complexation is disrupted with increasing pH, where the interaction completely ceased at pH > 6.  相似文献   

16.
利用具有聚集诱导发光特性的荧光染料4,4'-[(1E,1'E)蒽-9,10-二基双(乙烯-2,1-二基)]双(N,N-二甲基苯胺)(NDSA), 通过两亲性聚合物二硬脂酰基磷脂酰乙醇胺-聚乙二醇-N-羟基琥珀酰亚胺(DSPE-PEG-NHS)包覆的方法制备了明亮的橙色荧光纳米粒子, 其最大发射波长为559 nm, 在水溶液中具有2.89%的荧光量子产率. 该纳米粒子具有优异的发光特性和良好的生物相容性. 在该纳米粒子表面修饰肝癌细胞靶向的人类婆罗双树样基因-4(SALL4)抗体后, 荧光纳米粒子NDSA@SALL4可以特异性地靶向肝癌细胞, 还可以在细胞核富集, 呈现出明亮的橙色荧光, 为早期检测肝癌细胞提供了可能.  相似文献   

17.
In order to overcome the limitation of traditional active nano-therapeutic drugs on tumor targeting effciency which cannot reach the receptor/target in sufficient amount in the body,in this work,we developed a monoclonal antibody (mAb) and a polymer-hyd-doxorubicin prodrug conjugate,which enables the self-assembled nanoparticles to have precise targeting,tumor tissue aggregation and pH-sensitive drug release.We first prepared an amphiphilic polymer prodrug,abbreviated as H2N-PEEP-b-PBYP-hyd-DOX,via a combination of ring-opening polymerization (ROP) and "click" chemistry,in which PEEP and PBYP represent two kinds of phosphoester segmemts,-hyd-is hydrazone bond.After self-assembly into prodrug nanoparticles (PDNPs) with a diameter of about 93 nm,CD147 mAb was conjugated onto the PDNPs by EDC/NHS chemistry to form mAb-PDNPs.For the PDNPs and mAb-PDNPs,we also investigated their stability,in vitro drug release behavior and cellular uptake.The results showed that the pH-responsive PDNPs can remain relatively stable under the condition of PB 7.4 buffer solution.However,under acidic conditions or in the presence of phosphodiesterase I (PDE I),both the amount and rate of DOX release increased at the same incubation period.Cytotoxicity assay showed that mAb-PDNPs exhibited higher cytotoxicity (IC50:1.12 mg·L-1) against HepG2 cells than PDNPs (IC50:2.62 mg·L-1) without monoclonal antibody.The nanoparticles with antibodies mAb-PDNPs have relatively better stability and can directly achieve the targeting drug delivery through CD147 mAb.  相似文献   

18.
Theranostic hyaluronic acid (HA) prodrug micelles with pH-responsive drug release and aggregation-induced emission (AIE) properties were prepared by chemical graft of biomimetic phosphorylcholine (PC), anticancer drug doxorubicin (DOX) and AIE fluorogen tetraphenylene (TPE) to the HA backbone. DOX was conjugated to the HA backbone by a hydrazone bond which can be hydrolyzed under acidic environment and result in pH-triggered smart release of DOX. The TPE units with typical AIE characteristics were applied for real time drug tracking in cancer cells. The HA-based prodrugs could self-assemble into micelles in aqueous solution as confirmed by the dynamic light scattering (DLS) and transmission electron microscopy (TEM). The intracellular distribution of HA prodrug micelles could be clearly observed by fluorescence microscopy based on the strong fluorescence of TPE. Moreover, after treated with the micelles, stronger fluorescence of TPE in CD44 overexpressed MDA-MB-231 cancer cells was observed, compared to the CD44 negative cell line, NIH3T3 cells, suggesting efficient cell uptake of HA prodrug micelles by receptor-mediated endocytosis. The cell viability results indicated that the prodrug micelles could inhibit the proliferation of the cancer cells effectively. Such pH-triggered theranostic drug delivery system with AIE features can provide a new platform for targeted and image-guided cancer therapy.  相似文献   

19.
This research investigated a novel folic acid(FA)-modified zirconium core metal-organic framework(MOF) Uio-66 as a nanocarrier to deliver indocyanine green(ICG) and Sunitinib to cancer cells for combination therapy. Platinum-loaded Uio-66 nanoparticles(Pu) were synthesized via a one-pot method, followed by the modification with FA on their surfaces. This afforded FPu that enabled subsequent loading of ICG and Sunitinib to achieve dual-modal cancer therapy. Drug loading/release test and singlet oxygen detection were also conducted in vitro, and the nanoparticles showed considerable drug loading efficiency for both ICG and Sunitinib, coupled with a high singlet oxygen generation rate. Specifically, drug loading and encapsulation efficiency of Sunitinib were 2.30% and 72.67%, while those for ICG were 2.87% and 90.28%, respectively. Additionally, cytotoxicity test on HepG2 human hepatocellular carcinoma cancer cell line revealed that the fully functional nanoparticles possess excellent biocompatibility and as such could be further investigated as a potential drug delivery system for effectual carcinoma cancer treatment.  相似文献   

20.
The condensed tumor extracellular matrix(ECM) consisting of cross-linked hyaluronic acid(HA) is one of the key factors that result in the aberrant tumor microenvironment and severely impair drug delivery and tumor penetration. Herein, we report a simple design of a hyaluronidase(HAase)-modified layered double hydroxide(LDH) nanoplatform loaded with anticancer drug doxorubicin(DOX) for enhanced tumor penetration and augmented chemotherapy. In our approach, LDH nanodisks were synthesized via a co-precipitation method, modified with HAase by electrostatic attraction, and finally physically loaded with DOX. The formulated DOX/LDH-HAase complexes show a high DOX loading percentage of 34.2% with good colloidal stability, retain 86.1% of the enzyme activity, and release DOX in a pH-responsive manner having a faster release rate under slightly acidic tumor microenvironment than that under a physiological condition. With the catalytic activity of HAase to digest the HA nearby the cancer cells, the developed DOX/LDH-HAase complexes enable more significant uptake by cancer cells and penetration in 3-dimensional tumor spheroids than enzyme-free DOX/LDH complexes, thus displaying much better antitumor efficacy in vitro than the latter. The more significant tumor penetration and inhibition of the DOX/LDH-HAase complexes than that of the DOX/LDH complexes was further demonstrated by in vivo tumor imaging and therapeutic activity assessments. Our study suggests a unique nanomedicine platform combined with both anticancer drug and enzyme for improved tumor penetration and chemotherapy, which is promising for effective chemotherapy of different types of stroma-rich tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号