首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We present results of Molecular Dynamics (MD) calculations on the behavior of liquid nanodroplets on rough hydrophobic and hydrophilic solid surfaces. On hydrophobic surfaces, the contact angle for nanodroplets depends strongly on the root-mean-square roughness amplitude, but it is nearly independent of the fractal dimension of the surface. Since increasing the fractal dimension increases the short-wavelength roughness, while the long-wavelength roughness is almost unchanged, we conclude that for hydrophobic interactions the short-wavelength (atomistic) roughness is not very important. We show that the nanodroplet is in a Cassie-like state. For rough hydrophobic surfaces, there is no contact angle hysteresis due to strong thermal fluctuations, which occur at the liquid-solid interface on the nanoscale. On hydrophilic surfaces, however, there is strong contact angle hysteresis due to higher energy barrier. These findings may be very important for the development of artificially biomimetic superhydrophobic surfaces.  相似文献   

2.
采用自仿射分形对粗糙表面形貌进行了定量描述。基于分形粗糙表面形貌,建立了粗糙表面润湿性的理论模型并进行了数值计算,分析讨论了均方根粗糙度和表面分形维数对接触角的影响。研究结果表明,均方根粗糙度对接触角的影响较大,而粗糙表面的分形维数对润湿性的影响则并不明显。  相似文献   

3.
液滴在梯度微结构表面上的铺展动力学分析   总被引:1,自引:0,他引:1       下载免费PDF全文
林林  袁儒强  张欣欣  王晓东 《物理学报》2015,64(15):154705-154705
本文通过改变肋柱宽度和间距, 构造了二级和多级梯度微结构表面, 采用格子-Boltzmann方法对液滴在两种梯度表面上的铺展过程进行了研究, 探析液滴运动的机理和调控方法. 结果表明, 在改变肋柱间距的二级梯度表面上, 当液滴处于Cassie态时, 接触角滞后大小与粗糙度梯度成正比关系; 当液滴从Cassie态转换为Wenzel态或介于两者之间的不稳定态时, 这一正比关系不再遵循. 在改变肋柱宽度的二级梯度表面上, 接触角滞后大小与粗糙度梯度始终成正比关系. 在多级梯度表面上, 随液滴初始半径增大, 接触角滞后减小, 但液滴平衡位置相较于初始位置偏离增大. 对梯度微结构表面上液滴运动和接触角滞后的定量分析, 可为实现梯度微结构表面液滴运动调控提供理论依据.  相似文献   

4.
Various rough surfaces coated with titanium oxide nanoparticles and perfluoroalkyl methacrylic copolymer were conducted to explore the influence of surface roughness on the performance of water- and oil-repellence. Surface characteristics determined from nitrogen physisorption at −196 °C showed that the surface area and pore volume increased significantly with the extent of nanoparticle ratio, indicating an increase of surface roughness. Due to the surface nano-coating, the maximum contact angles of water and ethylene glycol (EG) droplets increased up to 56 and 48%, respectively, e.g. from 105° to 164° for water droplets and from 96° to 144° for EG droplets. The excellent water- and oil-repellence of the prepared surfaces was ascribed to this increase of surface roughness and fluorinated-contained surface. Compared with Wenzel model, the Cassie model yielded a fairly good fit to the simulation of contact angle with surface roughness. However, a derivation of 3°–10° at higher roughness still existed. This phenomenon was very likely due to the surface heterogeneity with different pore size distributions of the fractal surfaces. In this case, it was unfavorable for super repellency from rough surface with larger mesopore fraction because of its capillary condensation, reflecting that micropore provided more air resistance against wettability.  相似文献   

5.
We report on the fractal analysis of digital speckle patterns experimentally generated using an optical setup to record the light scattered from metallic rough surfaces in the normal direction. Using the differential box counting technique, we have calculated the fractal dimension of digital speckle patterns for six samples with different roughness. Our results show a quadratic dependence between the surface roughness and the fractal dimension of the corresponding digital speckle pattern. As an application a method to determine the surface roughness of metallic surfaces is proposed.  相似文献   

6.
Fractal Analysis of Surface Roughness of Particles in Porous Media   总被引:1,自引:0,他引:1       下载免费PDF全文
A fractal dimension for roughness height (RH) is introduced to characterize the degree of roughness or disorder of particle surface characters which significantly influence physical-chimerical processes in porous media. An analytical expression for the fractal dimension of RH on statistically self-similar fractal surfaces is derived and is expressed as a function of roughness parameters. The specific surface area (SSA) of porous materials with spherical particles is also derived, and the proposed fractal model for the SSA of particles with rough surfaces is expressed as a function of fractal dimension for RH and fractal dimension for particle size distribution, relative roughness of particle surface, and ratio of the minimum to the maximum particle diameters of spherical particles.  相似文献   

7.
接触角滞后现象的理论分析   总被引:21,自引:1,他引:20  
在本文的研究中,考虑表面粗糙的影响,通过引入附加“磨擦力”的概念,分别用力学方法和热力学方法导出固体表面上液滴平衡时接触角应满足的条件;并得到了液滴系统自由能-固液接触面积曲线;分析了前进接触角和后退接触角的物理意义;由此给出了接触角滞后现象的一种合理解释.这对于进一步认识接触角的滞后现象,无疑是有积极意义的.  相似文献   

8.
X. Yin 《哲学杂志》2013,93(24):2984-3005
Discrete dislocation plasticity was used to analyse plane-strain indentation of a single-crystal elastic–plastic semi-infinite medium by a rigid surface exhibiting multi-scale roughness, characterised by self-affine (fractal) behaviour. Constitutive rules of dislocation emission, glide and annihilation were used to model short-range dislocation interactions. Dislocation multiplication and the development of subsurface shear stresses due to asperity microcontacts forming between a single-crystal medium and a rough surface were examined in terms of surface roughness and topography (fractal) parameters, slip-plane direction and spacing, dislocation source density, and contact load (surface interference). The effect of multi-scale interactions between asperity microcontacts on plasticity is elucidated in light of results showing the evolution of dislocation structures. Numerical solutions yield insight into plastic flow of crystalline materials in normal contact with surfaces exhibiting multi-scale roughness.  相似文献   

9.
A multiscale molecular dynamics approach to contact mechanics   总被引:1,自引:0,他引:1  
The friction and adhesion between elastic bodies are strongly influenced by the roughness of the surfaces in contact. Here we develop a multiscale molecular dynamics approach to contact mechanics, which can be used also when the surfaces have roughness on many different length-scales, e.g., for self affine fractal surfaces. As an illustration we consider the contact between randomly rough surfaces, and show that the contact area varies linearly with the load for small load. We also analyze the contact morphology and the pressure distribution at different magnification, both with and without adhesion. The calculations are compared with analytical contact mechanics models based on continuum mechanics.  相似文献   

10.
Quantitative correlation between the critical impact velocity of droplet and geometry of superhydrophobic surfaces with microstructures is systematically studied.Experimental data shows that the critical impact velocity induced wetting transition of droplet on the superhydrophobic surfaces is strongly determined by the perimeter of single micropillar,the space between the repeat pillars and the advancing contact angle of the sidewall of the micropillars.The proposed model agrees well with the experimental results,and clarifies that the underlying mechanism which is responsible for the superhydrophobic surface with hierarchical roughness could sustain a higher liquid pressure than the surfaces with microstructures.  相似文献   

11.
Although the liquid- 4He-cesium system is a nearly ideal one for studying wetting phenomena, it can show extreme hysteresis which is profoundly nonideal in behavior. It is suggested that this is due to the roughness of these Cs surfaces. We show that stable micropuddles of liquid 4He can form in shallow cavities on a Cs surface. It is the potential to form micropuddles, as the liquid tries to recede, which pins the contact line due to the large energy needed to create the surface of a micropuddle. This model also accounts for the memory that these surfaces have of being in contact with liquid 4He.  相似文献   

12.
液态镓在石墨烯表面的润湿性及形貌特征   总被引:1,自引:0,他引:1       下载免费PDF全文
王俊珺  李涛  李雄鹰  李辉 《物理学报》2018,67(14):149601-149601
液态Ga及其合金的熔点低、毒副作用小、导电率高,使得这类液态金属能像石墨烯一样被广泛应用于微流器件、柔性电子器件中,制备这些器件的关键在于有效控制各生产环节中液态金属在固体界面上的润湿性及形貌特征.基于Lennard-Jones(L-J)势函数,利用分子动力学模拟方法研究了金属Ga在石墨烯表面的润湿性,根据模拟结果拟合的L-J势参数能正确描述Ga原子与衬底之间的相互作用并得到了与实验值极为接近的润湿角,发现衬底与液膜间相互作用的微小改变都会对最终润湿形态产生极大影响,平衡态的润湿角和脱离衬底速度随着Ga-C间势能的减小而增大,并成功获得了不同厚度的Ga液膜在石墨烯表面的形态演变规律,极为符合液态Ga的基本特性.利用所得L-J势函数参数模拟了液态Ga在粗糙度相同但纳米柱尖端形貌不同的C材料表面的润湿演变,发现纳米柱尖端形貌对液态Ga的润湿过程及状态影响极大.  相似文献   

13.
流体液滴在固体表面的浸润性对其润滑性能至关重要.本文利用分子动力学方法研究了正癸烷纳米液滴在铜表面上的润湿特性.结果表明:在平坦光滑表面上,壁面的厚度和分子数目对润湿效果影响不大.随着壁面能量势阱参数εs 增大,接触角线性减小.随着温度升高,液滴的接触角减小.在沟槽粗糙表面上,随着粗糙度因子增大,对于疏液表面,接触角增大到一定值后基本保持不变,符合Cassie理论;中性和亲液表面接触角则会减小,为Wenzel润湿模式.当表面分数增大时,疏液与亲液表面接触角整体呈减小的趋势,对中性表面影响不大.当温度升高时,粗糙疏液表面接触角会增大,润湿效果更差,而粗糙中性和亲液表面液滴润湿性会更好.  相似文献   

14.
Roughening a hydrophobic surface enhances its nonwetting properties into superhydrophobicity. For liquids other than water, roughness can induce a complete rollup of a droplet. However, topographic effects can also enhance partial wetting by a given liquid into complete wetting to create superwetting. In this work, a model system of spreading droplets of a nonvolatile liquid on surfaces having lithographically produced pillars is used to show that superwetting also modifies the dynamics of spreading. The edge speed-dynamic contact angle relation is shown to obey a simple power law, and such power laws are shown to apply to naturally occurring surfaces.  相似文献   

15.
规则表面形貌的分形和多重分形描述   总被引:11,自引:0,他引:11       下载免费PDF全文
孙霞  吴自勤 《物理学报》2001,50(11):2126-2131
以6种具有典型特征的生成元构造了6个具有相同rms粗糙度的规则表面,用变分法计算了这些表面的分形维数,结果表明,分形维数可以将具有相同rms粗糙度的表面区分开来,它定量表征了表面的总体形貌。进一步将多重分形的方法应用到对这些表面的分析中,发现多重分形谱可以全面反映表面概率的分布特征。多重分形谱的宽度可以定量表征表面的起伏程度,多重分形谱最大、最小概率子集维数的差别可以统计表面最大、最小概率处的数目比例。 关键词: 粗糙度 分形维数 多重分形谱  相似文献   

16.
We study the quenched random disorder(QRD) effects created by aerosil dispersion in the octylcyanobiphenyl(8CB) liquid crystal(LC) using atomic force microscopy technique. Gelation process in the 8CB+aerosil gels yields a QRD network which also changes the surface topography. By increasing the aerosil concentration, the original smooth pattern of LC sample surfaces is suppressed by the emergence of a fractal aerosil surface effect and these surfaces become more porous, rougher and they have more and larger crevices. The dispersed aerosil also serves as pinning centers for the liquid crystal molecules. It is observed that via the diffusion-limitedaggregation process, aerosil nano-particles yield a fractal-like surface pattern for the less disordered samples. As the aerosil dispersion increases, the surface can be described by more aggregated regions, which also introduces more roughness. Using this fact, we show that there is a net correlation between the short-range ordered x-ray peak widths(the results of previous x-ray diffraction experiments) and the calculated surface roughness. In other words, we show that these QRD gels can also be characterized by their surface roughness values.  相似文献   

17.
不同沉积条件下,在单晶硅基底上沉积了含氮氟化类金刚石(FN-DLC)薄膜,用静滴接触角/表面张力测量仪测量了水与FN-DLC膜表面的接触角.用X射线光电子能谱、Raman光谱和傅里叶变换吸收红外光谱(FTIR)分析了薄膜的组分和结构.用原子力显微镜观测了薄膜的表面形貌.结果表明,FN-DLC薄膜疏水性能主要取决于薄膜表面的化学结构、薄膜表面极化强度的强弱、以及薄膜的表面粗糙度的大小.sp3/sp2的比值减小,CF2基团含量增加,薄膜粗糙度增加,接触角增大;反之,则接触角减小.在工艺上,沉积温度和功率的减小,气体流量比r(r=CF4/[CF4+CH4])的增加,都会使水的浸润性变差,接触角增大. 关键词: 氟化类金刚石膜 疏水性 接触角  相似文献   

18.
Controlled surface roughness experiments have been performed on aluminum to determine the effect on ellipsometric parameters. To help characterize the surfaces SEM, light scattering, photo electron emission, surface potential difference and water contact angle measurements were made. Comparison of experimental results with recent theory is also presented.  相似文献   

19.
A variety of flat superhydrophilic surfaces have been fabricated for biological and industrial applications. We report here the preparation of a simple and inexpensive non-polar curved superhydrophilic surface. This surface has dual-scale surface roughness, on both micro- and nanoscales. Curved surfaces with a near-zero water contact angle and ‘complete wetting’ are demonstrated. By using a conventional plasma etching process, which creates microscale irregularity on an aluminum surface, followed by an anodization process which further modifies the plasma etched surface by creating nanoscale structures, we generate a surface having irregularities on two-scales. This surface displays a semi-permanent superhydrophilic property (if the surface has no damage by the exterior failure), having a near-zero contact angle with water drops. We further report a simple and inexpensive curved (i.e., non-planar) superhydrophilic structure with a near-zero contact angle. The dual-scale character of the surface increases the capillary force effect and reduces the energy barriers of the nanostructures.  相似文献   

20.
KDP晶体单点金刚石车削表面形貌分形分析   总被引:4,自引:0,他引:4       下载免费PDF全文
 分别使用2维和3维分形方法对单点金刚石车削加工的KDP晶体表面形貌进行了分析,并对表面的3维分形维数和3维粗糙度表征参数进行了比较,分析了二者对表面形貌表征的差异。使用2维轮廓分形方法计算了KDP晶体表面圆周各方向上的分形维数。通过分析得出:3维分形维数与表面粗糙度值成反比关系;使用单点金刚石车削方法加工KDP晶体会形成各向异性特征明显的已加工表面,在一定程度上容易形成小尺度波纹;已加工表面是否具有明显的小尺度波纹特征与表面粗糙度值并无直接关系,但与其表面轮廓分形状态分布密切相关;KDP晶体表面2维功率谱密度与其分形状态具有相近的方向性特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号