首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We find that the amplitude of quantum fluctuations of the invariant de Sitter vacuum coincides exactly with that of the vacuum of a comoving observer for a massless scalar (inflaton) field. We propose redefining the actual physical power spectrum as the difference between the amplitudes of the above vacua. An inertial particle detector continues to observe the Gibbons-Hawking temperature. However, although the resulting power spectrum is still scale-free, its amplitude can be drastically reduced since now, instead of the Hubble's scale at the inflationary period, it is determined by the square of the mass of the inflaton fluctuation field.  相似文献   

3.
The inflationary paradigm has enjoyed phenomenological success; however, a compelling particle physics realization is still lacking. Axions are among the best-motivated inflaton candidates, since the flatness of their potential is naturally protected by a shift symmetry. We reconsider the cosmological perturbations in axion inflation, consistently accounting for the coupling to gauge fields cΦFF, which is generically present in these models. This coupling leads to production of gauge quanta, which provide a new source of inflaton fluctuations, δΦ. For c≥10(2)M(p)(-1), these dominate over the vacuum fluctuations, and non-Gaussianity exceeds the current observational bound. This regime is typical for concrete realizations that admit a UV completion; hence, large non-Gaussianity is easily obtained in minimal and natural realizations of inflation.  相似文献   

4.
Using a semiclassical approach to Gravitoelectromagnetic Inflation (GEMI), we study the origin and evolution of seminal inflaton and electromagnetic fields in the early inflationary universe from a 5D vacuum state. The difference with other previous works is that in this one we use a Lorentz gauge. Our formalism is naturally not conformal invariant on the effective 4D de Sitter metric, which make possible the super adiabatic amplification of magnetic field modes during the early inflationary epoch of the universe on cosmological scales.  相似文献   

5.
We study an inflationary scenario where thermal inflation is followed by fast-roll inflation. This is a rather generic possibility based on the effective potentials of spontaneous symmetry breaking in the context of particle physics models. We show that a large enough expansion could be achieved to solve cosmological problems. However, the power spectrum of primordial density perturbations from the quantum fluctuations in the inflaton field is not scale invariant and thus inconsistent with observations. Using the curvaton mechanism instead, we can obtain a nearly scale invariant spectrum, provided that the inflationary energy scale is sufficiently low to have long enough fast-roll inflation to dilute the perturbations produced by the inflaton fluctuations.  相似文献   

6.
We revisit an extension of the well-known formalism for gauge-invariant scalar metric fluctuations to study the spectra for both the inflaton and gauge-invariant (scalar) metric fluctuations in the framework of a single-field inflationary model, in which the quasi-exponential expansion is driven by an inflaton which is minimally coupled to gravity. The proposal here examined is valid also for fluctuations with large amplitudes, but for cosmological scales, where vector and tensor perturbations can be neglected and the fluid is irrotacional.  相似文献   

7.
Inflationary scenarios in string theory often involve a large number of light scalar fields, whose presence can enrich the post-inflationary evolution of primordial fluctuations generated during the inflationary epoch. We provide a simple example of such post-inflationary processing within an explicit string-inflationary construction, using a Kähler modulus as the inflaton within the framework of LARGE Volume Type-IIB string flux compactifications. We argue that inflationary models within this broad category often have a selection of scalars that are light enough to be cosmologically relevant, whose contributions to the primordial fluctuation spectrum can compete with those generated in the standard way by the inflaton. These models consequently often predict nongaussianity at a level, \( {f_{\text{NL}}} \simeq \mathcal{O}\left( {10} \right) \), potentially observable by the Planck satellite, with a bi-spectrum maximized by triangles with squeezed shape in a string realization of the curvaton scenario. We argue that the observation of such a signal would robustly prefer string cosmologies such as these that predict a multi-field dynamics during the very early universe.  相似文献   

8.
We discuss the issue of setting appropriate initial conditions for inflation. Specifically, we consider natural inflation model and discuss the fine tuning required for setting almost homogeneous initial conditions over a region of order several times the Hubble size which is orders of magnitude larger than any relevant correlation length for field fluctuations. We then propose to use the special propagating front solutions of reaction–diffusion equations for localized field domains of smaller sizes. Due to very small velocities of these propagating fronts we find that the inflaton field in such a field domain changes very slowly, contrary to naive expectation of rapid roll down to the true vacuum. Continued expansion leads to the energy density in the Hubble region being dominated by the vacuum energy, thereby beginning the inflationary phase. Our results show that inflation can occur even with a single localized field domain of size smaller than the Hubble size. We discuss possible extensions of our results for different inflationary models, as well as various limitations of our analysis (e.g. neglecting self gravity of the localized field domain).  相似文献   

9.
In this paper we study inflationary dynamics with a scalar field in an inverse coshyperbolic potential in the braneworld model. We note that a sufficient inflation may be obtained with the potential considering slow-roll approximation in the high energy limit. We determine the minimum values of the initial inflaton field required to obtain sufficient inflation and also determine the relevant inflationary parameters. The numerical values of spectral index of the scalar perturbation spectrum are determined by varying the number of e-foldings for different initial values of the inflaton field. The result obtained here is in good agreement with the current observational limits.   相似文献   

10.
We study the multifield inflationary models where the cosmological perturbation is sourced by light scalar fields other than the inflaton. We exploit the operator product expansion and partly the symmetries present during the de Sitter epoch to characterize the non-Gaussian four-point correlator in the squeezed limit. We point out that the contribution to it from the intrinsic non-Gaussianity of the light fields at horizon crossing can be larger than the usually studied contribution arising on superhorizon scales and it comes with a different shape. Our findings indicate that particular attention needs to be taken when studying the effects of the primordial NG on real observables, such as the clustering of dark matter halos.  相似文献   

11.
J. M. Cline 《Pramana》2004,62(3):749-752
We investigate the possibility that fields coupled to the inflaton can influence the primordial spectrum of density perturbations through their coherent motion. For example, the second field in hybrid inflation might be oscillating at the beginning of inflation rather than at the minimum of its potential. Although this effect is washed out if inflation lasts long enough, we note that there can be up to 30e-foldings of inflation prior to horizon crossing of COBE fluctuations while still giving a potentially visible distortion. Such pumping of the inflaton fluctuations by purely conventional physics can resemble trans-Planckian effects which have been widely discussed. The distortions which they make to the CMB could leave a distinctive signature which differs from generic effects like tilting of the spectrum.  相似文献   

12.
We establish the possibility that the initial configuration of fields for an inflationary period in the early universe can be set up by radiative corrections to the tree-level potential. A maximum of the radiatively-corrected potential can occur at an energy scale just above the Planck scale; we consider that the scalar (inflaton}) field rolls down from this maximum. In a model, we find that the radiative corrections also induce a minimum in the potential at a non–zero value of the energy scale somewhat below the Planck scale.  相似文献   

13.
《Physics letters. [Part B]》1988,208(2):198-202
A scale invariant model for early universe inflationary cosmology is developed. In order to realize dilatation invariance and spontaneous symmetry breaking we introduce two scalar fields, a dilaton and an inflaton. The scale invariant theory encompasses the Brans-Dicke and induced-gravity models as limiting cases. The model is solved numerically for a wide class of initial conditions. We find that the inflationary epoch is generically characterized by a two phase evolution of the universe: A single or double exponential era and a power-law expansion. Onset of gravity triggers double exponential evolution of the scale factor. We further examine inflation in the Brans-Dicke theory and find that scale invariance is restored in the course of spontaneous symmetry breaking.  相似文献   

14.
During cosmological inflation, it has been suggested that fields coupled to the inflaton can be excited by the slow-rolling inflaton into a quasi-stable non-vacuum state. Within this scenario of “warm inflation”, this could allow for a smooth transition to a radiation dominated Universe without a separate reheating stage and a modification of the slow roll evolution, as the heat-bath backreacts on the inflaton through friction. In order to study this from first principles, we investigate the dynamics of a scalar field coupled to the inflaton and N   light scalar boson fields, using the 2PI-1/N1/N expansion for nonequilibrium quantum fields. As a first step we restrict ourselves to Minkowski spacetime, interpret the inflaton as a time-dependent background, and use vacuum initial conditions. We find that the dominant effect is particle creation at late stages of the evolution due to the effective time-dependent mass. The further transfer of energy to the light degrees of freedom and subsequent equilibration only occurs after the end of inflation. As a consequence, the adiabatic constraint, which is assumed in most studies of warm inflation, is not satisfied when starting from an initial vacuum state.  相似文献   

15.
Kim JE  Kyae B  Lee HM 《Physical review letters》2001,86(19):4223-4226
The vanishing cosmological constant in the four-dimensional space-time is obtained in a 5D Randall-Sundrum model with a brane (B1) located at y = 0. The matter fields can be located at the brane. For settling any vacuum energy generated at the brane to zero, we need a three-index antisymmetric tensor field A(MNP) with a specific form for the Lagrangian. For the self-tuning mechanism, the bulk cosmological constant should be negative.  相似文献   

16.
We point out that modern brane theories suffer from a severe vacuum energy problem. To be specific, the Casimir energy associated with the matter fields confined to the brane, is stemming from the one and the same localization mechanism which forms the brane itself, and is thus generically unavoidable. Possible practical solutions are discussed, including in particular spontaneously broken supersymmetry, and quantum mechanically induced brane tension.  相似文献   

17.
《Physics letters. [Part B]》1999,459(4):473-481
In the presence of fields without superpotential but with large vevs through D-terms the mass-squared of the inflaton in the context of supergravity hybrid inflation receives positive contributions which could cancel the possibly negative Kähler potential ones. The mechanism is demonstrated using Kähler potentials associated with products of SU(1,1)/U(1) Kähler manifolds. In a particularly simple model of this type all supergravity corrections to the F-term potential turn out to be proportional to the inflaton mass allowing even for an essentially completely flat inflationary potential. The model also allows for a detectable gravitational wave contribution to the microwave background anisotropy. Its initial conditions are quite natural largely due to a built in mechanism for a first stage of “chaotic” D-term inflation.  相似文献   

18.
Using a previously introduced model in which the expansion of the universe is driven by a single scalar field subject to gravitational attraction induced by a white hole during the expansion (from a 6D vacuum state), we study the origin of squared inflaton fluctuations spectrum on astrophysical scales.  相似文献   

19.
It has been demonstrated that fluctuations in the new inflationary universe may be almost scale-invariant, but are unfortunately too large. We show that supersymmetric inflationary models allow the fluctuations to be smaller. In a toy supersymmetric model, the perturbations are O(10−4) is the Yukawa interactions are O(10−6μ/mp) where μ is the magnitude of the Higgs vacuum expectation value driving the inflation. It is therefore easier to have small fluctuations if inflation occurs close to the Planck epoch.  相似文献   

20.
In this work we study the particle production in time dependent periodic potential using the method of complex time WKB (CWKB) approximation. In the inflationary cosmology at the end of the inflationary stage, the potential becomes time dependent as well as periodic. Reheating occurs due to particle production by the oscillating inflaton field. Using CWKB we obtain almost identical results on catastrophic particle production as obtained by others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号