首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that some simple well-studied quantum mechanical systems without fermion (spin) degrees of freedom display, surprisingly, a hidden supersymmetry. The list includes the bound state Aharonov-Bohm, the Dirac delta and the Pöschl-Teller potential problems, in which the unbroken and broken N = 2 supersymmetry of linear and nonlinear (polynomial) forms is revealed.  相似文献   

2.
Motivated by a desire to find a useful 2d Lorentz-invariant reformulation of the AdS5×S5 superstring world-sheet theory in terms of physical degrees of freedom we construct the “Pohlmeyer-reduced” version of the corresponding sigma model. The Pohlmeyer reduction procedure involves several steps. Starting with a coset space string sigma model in the conformal gauge and writing the classical equations in terms of currents one can fix the residual conformal diffeomorphism symmetry and kappa-symmetry and introduce a new set of variables (related locally to currents but non-locally to the original string coordinate fields) so that the Virasoro constraints are automatically satisfied. The resulting equations can be obtained from a Lagrangian of a non-Abelian Toda type: a gauged WZW model with an integrable potential coupled also to a set of 2d fermionic fields. A gauge-fixed form of the Pohlmeyer-reduced theory can be found by integrating out the 2d gauge field of the gauged WZW model. The small-fluctuation spectrum near the trivial vacuum contains 8 bosonic and 8 fermionic degrees of freedom with equal mass. We conjecture that the reduced model has world-sheet supersymmetry and is ultraviolet-finite. We show that in the special case of the AdS2×S2 superstring model the reduced theory is indeed supersymmetric: it is equivalent to the N=2 supersymmetric extension of the sine-Gordon model.  相似文献   

3.
《Nuclear Physics B》2001,602(3):499-513
Orientable open string theories containing both bosons and fermions without the GSO projection are expected to have the 10-dimensional N=2 space–time supersymmetry in a spontaneously broken phase. We study the low-energy theorem for the nonlinearly realized N=2 supersymmetry using the effective action for an unstable D9-brane. It is explicitly confirmed that the 4-fermion open string amplitudes without the GSO projection obey the low-energy theorem derived from the nonlinear N=2 supersymmetry. An intimate connection between the existence of the hidden supersymmetry and the open–open string (st) duality is pointed out.  相似文献   

4.
《Physics letters. [Part B]》2004,578(1-2):223-230
We present a superfield construction of Hamiltonian quantization with N=2 supersymmetry generated by two fermionic charges Qa. As a byproduct of the analysis we also derive a classically localized path integral from two fermionic objects Σa that can be viewed as “square roots” of the classical bosonic action under the product of a functional Poisson bracket.  相似文献   

5.
We present an N=2-supersymmetric mechanical system whose bosonic sector, with two degrees of freedom, exhibits the most general possible supersymmetric fourth order potential, including the interesting case of SU(2) Yang–Mills theory. The Painlevé test is adopted to discuss integrability and we focus on the rôle of supersymmetry and parity invariance in two space dimensions for the attainment of integrable or non-integrable models, with some remarks on the chaotic behavior. Our result shows that, for the model studied here, the relationships among the parameters, as imposed by supersymmetry, restrict the parameter space in such a way that the reduction on its non-integrable sector is much more severe than on its integrable sector (especially on the non-separable subset of the latter), thus suggesting that supersymmetry may favor (mainly non-separable) integrability.  相似文献   

6.
《Nuclear Physics B》2001,609(3):410-428
We reconsider the issue of embedding space–time fermions into the four-dimensional N=2 worldsheet supersymmetric string. A new heterotic theory is constructed, taking the right-movers from the N=4 topological extension of the conventional N=2 string but a c=0 conformal field theory supporting target-space supersymmetry for the left-moving sector. The global bosonic symmetry of the full formalism proves to be U(1,1), just as in the usual N=2 string. Quantization reveals a spectrum of only two physical states, one boson and one fermion, which fall in a multiplet of (1,0) supersymmetry.  相似文献   

7.
We present a supersymmetric field theory in two or three space-time dimensions with an internal symmetry of the O(N) type. In the large-N limit the model is finite and supersymmetry is spontaneously broken. The fields representing the order parameters of the broken supersymmetry phase acquire dynamics through quantum corrections. In particular the Goldstone fermion is a zero-mass fermionic bound state.  相似文献   

8.
《Nuclear Physics B》2002,620(1-2):181-194
We study a cosmic string solution of an (N=1)-supersymmetric version of the Cremmer–Scherk–Kalb–Ramond (CSKR) model coupled to scalars and fermions. The 2-form gauge potential is proposed to couple non-minimally to matter, here described by a chiral scalar superfield. The important outcome is that supersymmetry is kept exact in the core and it may also hold in the exterior region of the string. We contemplate the configurations of the bosonic sector and we check that the solutions saturate the Bogomol'nyi bound. A glimpse on the fermionic zero modes is also given.  相似文献   

9.
Supersymmetric quantum mechanics with several bosonic and fermionic dynamic variables is considered. Two different N = 2 supersymmetric models involving instantons are discussed in detail. Instantons fail to break supersymmetry in one of the models considered. The vacuum state is degenerate in this model which generally results in spontaneous breaking of internal left-right symmetry. In another model supersymmetry is destroyed dynamically due to special complex instanton solutions. Possible implications for SUSY field theories are discussed.  相似文献   

10.
We study the ultraviolet behavior of two dimensional supersymmetric non-linear -models with target space an arbitrary Kähler manifoldM, so that the models areN=2 supersymmetric. We point out that these models have an additional fermionic axial symmetry if and only if the metric onM is Ricci flat. We show that the preservation of this symmetry in perturbation theory implies that both bare and renormalized metrics onM are Ricci flat. Combining this result with the constraint ofN=2 supersymmetry requiring that all counter-terms to the metric beyond one-loop order be cohomologically trivial, we argue thatN=2 models defined on Ricci flat Kähler manifolds are on-shell ultraviolet finite to all orders of perturbation theory.  相似文献   

11.
Classification of the N=1 space–time supersymmetric fermionic Z2×Z2 heterotic-string vacua with symmetric internal shifts, revealed a novel spinor-vector duality symmetry over the entire space of vacua, where the StV duality interchanges the spinor plus anti-spinor representations with vector representations. In this paper we demonstrate that the spinor-vector duality exists also in fermionic Z2 heterotic string models, which preserve N=2 space–time supersymmetry. In this case the interchange is between spinorial and vectorial representations of the unbroken SO(12) GUT symmetry. We provide a general algebraic proof for the existence of the StV duality map. We present a novel basis to generate the free fermionic models in which the ten-dimensional gauge degrees of freedom are grouped into four groups of four, each generating an SO(8) modular block. In the new basis the GUT symmetries are produced by generators arising from the trivial and non-trivial sectors, and due to the triality property of the SO(8) representations. Thus, while in the new basis the appearance of GUT symmetries is more cumbersome, it may be more instrumental in revealing the duality symmetries that underly the string vacua.  相似文献   

12.
《Nuclear Physics B》2003,649(3):415-448
We investigate the out of equilibrium dynamics of global chiral supersymmetry at finite energy density. We concentrate on two specific models. The first is the massive Wess–Zumino model which we study in a self-consistent one-loop approximation. We find that for energy densities above a certain threshold, the fields are driven dynamically to a point in field space at which the fermionic component of the superfield is massless. The state, however, is found to be unstable, indicating a breakdown of the one-loop approximation. To investigate further, we consider an O(N) massive chiral model which is solved exactly in the large N limit. For sufficiently high energy densities, we find that for late times the fields reach a nonperturbative minimum of the effective potential degenerate with the perturbative minimum. This minimum is a true attractor for O(N) invariant states at high energy densities, and this provides a mechanism for determining which of the otherwise degenerate vacua is chosen by the dynamics. The final state for large energy density is a cloud of massless particles (both bosons and fermions) around this new nonperturbative supersymmetric minimum. By introducing boson masses which softly break the supersymmetry, we demonstrate a see-saw mechanism for generating small fermion masses. We discuss some of the cosmological implications of our results.  相似文献   

13.
《Nuclear Physics B》2003,661(3):514-532
It is known that the localization length scaling of noninteracting electrons near the quantum Hall plateau transition can be described in a theory of the bosonic density operators, with no reference to the underlying fermions. The resulting “Liouvillian” theory has a U(1|1) global supersymmetry as well as a hierarchy of geometric conservation laws related to the noncommutative geometry of the lowest Landau level (LLL). Approximations to the Liouvillian theory contain quite different physics from standard approximations to the underlying fermionic theory. Mean-field and large-N generalizations of the Liouvillian are shown to describe problems of noninteracting bosons that enlarge the U(1|1) supersymmetry to U(1|1)×SO(N) or U(1|1)×SU(N).These noninteracting bosonic problems are studied numerically for 2⩽N⩽8 by Monte Carlo simulation and compared to the original N=1 Liouvillian theory. The N>1 generalizations preserve the first two of the hierarchy of geometric conservation laws, leading to logarithmic corrections at order 1/N to the diffusive large-N limit, but do not preserve the remaining conservation laws. The emergence of nontrivial scaling at the plateau transition, in the Liouvillian approach, is shown to depend sensitively on the unusual geometry of Landau levels.  相似文献   

14.
The N = 4 Yang-Mills theory is truncated to an N = 3 Yang-Mills theory and to an N = 2 Yang-Mills theory coupled to an N = 2 Wess-Zumino field. The whole procedure is performed in the light-cone gauge. It is then shown that these theories are unique even if we only insist on N = 3 or N = 2 supersymmetry respectively. Finally we show in detail how the introduction of the fermionic Wess-Zumino field renders the one-loop self-energy finite.  相似文献   

15.
Y. Tanii 《Nuclear Physics B》1985,259(4):677-688
We study the local supersymmetry anomaly by constructing an N = 1 (counted by Majorana-Weyl spinors) chiral supergravity model in two dimensions. There is the local supersymmetry anomaly as well as the gravitational anomaly. We obtain the linearized forms of these anomalies by perturbation calculation. The full non-linear forms are obtained by finding a solution to the Wess-Zumino consistency condition. These anomalies can be derived from the supersymmetric extension of the Chern-Simons invariant in three dimensions.  相似文献   

16.
It is shown that noncommutative geometry is a nonperturbative regulator which can manifestly preserve a space supersymmetry and a supergauge symmetry while keeping only finite number of degrees of freedom in the theory. The simplest N= 1 case of the U(1) supergauge theory on the sphere is worked out in detail. Received: 15 March 1999 / Accepted: 8 April 1999  相似文献   

17.
The quantum worldsheet dynamics of vortex strings contains information about the 4d non-Abelian gauge theory in which the string lives. Here I tell this story. The string worldsheet theory is typically some variant of the CPN-1 sigma-model, describing the orientation of the string in a U(N) gauge group. Qualitative parallels between 2d sigma-models and 4d non-Abelian gauge theories have been known since the 1970s. The vortex string provides a quantitative link between the two. In 4d theories with N=2 supersymmetry, the exact BPS spectrum of the worldsheet coincides with the bulk spectrum in 4d. Moreover, by tuning parameters, the CPN-1 sigma-model can be coaxed to flow to an interacting conformal fixed point which is related to the 4d Argyres-Douglas fixed point. For theories with N=1 supersymmetry, the worldsheet theory suffers dynamical supersymmetry breaking and, more interestingly, supersymmetry restoration, in a way which captures the physics of Seiberg’s quantum deformed moduli space.  相似文献   

18.
《Physics letters. [Part B]》1997,407(2):131-142
The first two Hamiltonian structures and the recursion operator connecting all evolution systems and Hamiltonian structures of the N = 2 supersymmetric (n, m)-GNLS hierarchy are constructed in terms of N = 2 superfields in two different superfield bases with local evolution equations. Their bosonic limits are studied in detail. New local and nonlocal bosonic and fermionic integrals both for the N = 2 supersymmetric (n, m)-GNLS hierarchy and its bosonic counterparts are derived. As an example, in the n = 1, m = 1 case, the algebra and the symmetry transformations for some of them are worked out and a rich N = 4 supersymmetry structure is uncovered.  相似文献   

19.
Motivated by supersymmetry breaking in matrix model formulations of superstrings, we present some concrete models, in which the supersymmetry is preserved for any finite N, but gets broken at infinite N, where N is the rank of matrix variables. The models are defined as supersymmetric field theories coupled to some matrix models, and in the induced action obtained after integrating out the matrices, supersymmetry is spontaneously broken only when N is infinity. In our models, the large value of N gives a natural explanation for the origin of small parameters appearing in the field theories which trigger the supersymmetry breaking.  相似文献   

20.
C.M. Hull 《Nuclear Physics B》1984,239(2):541-572
The spontaneous breaking of supersymmetry in the presence of a cosmological constant Λ is discussed in a class of theories that includes gauged supergravity and the recently constructed model of N = 1 supergravity coupled to supermatter. The stability of de Sitter, anti-de Sitter and Minkowski vacua in these theories is investigated. Positivity of energy is demonstrated in a model independent way for supersymmetric vacua, even if the scalar potential is unbounded below, and for global minima of the potential for Λ ? 0.Free fields in anti-de Sitter space are considered and the distinction made between the coefficients of quadratic terms in the lagrangian, which vanish for Goldstone scalars, and the physical masses, which give the frequencies and total energies of modes. The number of degrees of freedom depends on gauge invariance, not on the vanishing of mass.The one-loop corrections to the cosmological constant are given for Λ ? 0 and they vanish if the physical masses obey certain sum rules. It is, however, the bilinear coefficients in the N = 1 supergravity-supermatter lagrangian, rather than the physical masses, that satisfy a quadratic sum rule. This sum rule depends on Λ so that a given mass splitting can be obtained for arbitrarily large supersymmetry breaking scales if Λ is sufficiently large and negative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号