首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Two new cobalt(III) complexes of the hexadentate ligand [1,4-bis[o-(pyridine-2-carboxamidophenyl)]-1,4-dithiobutane] (H2bpctb) with N4S2 donor set atoms have been synthesized. A reaction of Co(CH3COO)2·4H2O with (H2bpctb) leads to the formation of [CoIII(bpctb)]PF6 (1) having a CoN2(pyridine)N′2(amide)S2(thioether) coordination by symmetric bpctb2? ligand. A similar reaction under slightly different conditions, however, gives [CoIII(L a )(L b )] (2), resulting from a C–S bond cleavage reaction triggered by an acetate ion as a base, having CoN2(pyridine)N′2(amide)S(thioether)S′(thiolate) coordination. These two Co(III) complexes have been characterized by elemental analyses and spectroscopic methods, and the crystal and molecular structures of [CoIII(bpctb)]PF6 (1) in the form of the solvate (1·MeOH·H2O) and of [CoIII(L a )(L b )] (2) have been determined by X-ray crystallography. The Co atoms of both complexes exhibit distorted octahedral geometry. The electrochemical investigation of [Co(bpctb)]PF6·MeOH·H2O (1·MeOH·H2O) and [CoIII(L a )(L b )] (2) by cyclic voltammetry reveals a reversible CoIII–CoII redox process at E 1/2 = ?0.32 V (ΔE p = 80 mV); for 1, and E 1/2 = ?0. 87 V (ΔE p = 70 mV) for 2.  相似文献   

2.
The synthesis, characterization, spectroscopic and electrochemical properties of trans-[CoIII(L1)(Py)2]ClO4 (I) and trans-[CoIII(L2)(Py)2]ClO4 (II) complexes, where H2L1 = N,N′-bis(5-chloro-2-hydroxybenzylidene)-1,3-propylenediamine and H2L2 = N,N′-bis(5-bromo-2-hydroxybenzylidene)-1,3-propylenediamine, have been investigated. Both complexes have been characterized by elemental analysis, FT-IR, UV-Vis, and 1H NMR spectroscopy. The crystal structure of I has been determined by X-ray diffraction. The coordination geometry around cobalt(III) ion is best described as a distorted octahedron. The electrochemical studies of these complexes revealed that the first reduction process corresponding to Co(III/II) is electrochemically irreversible accompanied by dissociation of the axial Co-N(Py) bonds. The in vitro antimicrobial activity of the Schiff bse ligands and their corrsponding complexes have been tested against human pathogenic bacterias such as Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia coli. The cobalt(III) complexes showed lower antimicrobial activity than the free Schiff base ligands.  相似文献   

3.
The synthesis of a potentially bioactive mixed-valence CoIII/CoII complex with 2-acetylpyridine S-methylisothiosemicarbazone (HL) ligand is described. The crystal and molecular structure of the formed [CoIIIL2][CoIICl3 py]·Me2CO (I) compound (py stands for pyridine) is determined by single-crystal X-ray crystallography. It’s thermal decomposition along with the decomposition of the ligand and six structurally related complexes with formulas [CoL2]NO3·MeOH (1), [CoL2]Br·MeOH (2), [CoL2]HSO4·MeOH (3), [CoL2]2[CoII(NCS)4] (4), [Co(HL)(L)]I2·2MeOH (5), and [Co(HL)(L)][CoIICl4]·MeOH (6) was determined by simultaneous TG/DSC measurements. The decomposition pattern is evaluated using TG/DTA-MS data. The results were related to the solvent/moisture content and the decomposition mechanism of the compounds. The antimicrobial activity of the ligand and of all the complexes was tested in vitro for selected gram-negative and gram-positive bacteria and fungi. The activity of the ligand against all tested bacteria is comparable with those obtained for standard antibiotics, while it is less active against fungi. Surprisingly, the activity of the complexes is very low. The low antimicrobial activity of the complexes may be in connection with their high thermodynamic and kinetic inertness in solution. The results are also supported by the relatively high thermal stability of the complexes.  相似文献   

4.
To explore the influence of bulky backbone on complexes, three Co(II) and Zn(II) complexes with phenanthrene-9-carboxylate (L1), 9H-fluorene-9-carboxylate (L2) or biphenyl-4-carboxylate (L3) together with incorporating auxiliary bridging ligad 4,4′-bipyridine (4Bipy), were synthesized and characterized: [Co(L1)2(4Bipy)(H2O)2] (I), [Zn(L2)2(4Bipy)0.5(4Bipy)0.5] (II), and [Zn3(L3)4(4Bipy)0.5(4Bipy)0.5(4Bipy)0.5(OH)2] (III). X-ray single-crystal diffraction analyses show that complexes IIII both assume one-dimensional (1D) structures by incorporating the bridging 4Bipy (CIF file CCDC nos. 942729 (I), 942727 (II), and 942733 III). In I, mononuclear six-coordinated Co2+ ions are linked into a 1D linear chain by 4Bipy. While in II, mononuclear four-coordinated Zn2+ ions are linked into a 1D zigzag chain by 4Bipy. But in III, because of the existence of OH?, hexanuclear Zn(II) can be regarded as a node, then bridge adjacent hexanuclear Zn(II) nodes by almost parallelled three 4Bipy ligands into a 1D linear chain. Finally the 1D chains of I–III are further assembled into an overall three-dimensional (3D) framework via intermolecular H-bonding, π…π stacking, and/or C-H…π supramolecular interactions, respectively. The results indicate that, besides different metal ions Co2+ and Zn2+ or OH? anions, the steric hindrance of backbone ligands play an important role in the formation of I–III. Moreover, the luminescent properties of corresponding ligands and their complexes were briefly investigated.  相似文献   

5.
Three Ni(II) complexes of cresol-based Schiff-base ligands, namely [Ni2(L1)(NCS)3(H2O)2], (1) [Ni2(L2)(CH3COO)(NCS)2(H2O)] (2) and [Ni2(L3)(NCS)3] (3), (where L1 = 2,6-bis(N-ethylpyrrolidineiminomethyl)-4-methylphenolato, L2 = 2,6-bis(N-ethylpiperidineiminomethyl)-4-methylphenolato and L3 = 2,6-bis{N-ethyl-N-(3-hydroxypropyl iminomethyl)}-4-methylphenolato), have been synthesized and structurally characterized by X-ray single-crystal diffraction in addition to routine physicochemical techniques. Density functional theory calculations have been performed to understand the nature of the electronic spectra of the complexes. Complexes 1?C3 when reacted with 4-nitrophenyl phosphate in 50:50 acetonitrile?Cwater medium promote the cleavage of the O?CP bond to form p-nitrophenol and smoothly convert 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylquinone (3,5-DTBQ) either in MeOH or in MeCN medium. Phosphatase- and catecholase-like activities were monitored by UV?Cvis spectrophotometry and the Michaelis?CMenten equation was applied to rationalize all the kinetic parameters. Upon treatment with urea, complexes 1 and 2 give rise to [Ni2(L1)(NCS)2(NCO)(H2O)2] (1??) and [Ni2(L2)(CH3COO)(NCO)(NCS)(H2O)] (2??) derivatives, respectively, whereas 3 remains unaltered under same reaction conditions.  相似文献   

6.
Two new cobalt(III) complexes of the Schiff base N,N′-disalicylidene-1,2-phenylendiimine dianion (salophen), trans- [CoIII(salophen)(ta)2]ClO4, (ta = thioacetamide) (1) and trans-[CoIII(salophen)(tb)2]ClO4, (tb = thiobenzamide) (2) were synthesized and characterized using single-crystal X-ray diffraction and spectroscopic techniques. Both complexes show solvatochromism in a variety of solvents. Complex (1) crystallized from CHCl3 as a solvate of orthorhombic symmetry, space group Pca21 with a = 17.3480(10) Å, b = 18.7522(10) Å, c = 18.8128(11) Å, α = β = γ = 90°, and Z = 8. The cobalt(III) center lies in a distorted octahedral environment. The crystal structure of (1) consists of two independent [CoIII(salophen)(ta)2]+ cations and ClO4 - anions held together essentially via hydrogen bonds and π-π stacking interactions. Complex (2), forming also a CHCl3 solvate, crystallized in the monoclinic space group P21/n with a = 14.710(3) Å, b = 13.506(3) Å, c = 18.595(4) Å, β = 100.295(4)°, and Z = 4. The geometry around cobalt(III) center is a distorted octahedron. The crystal structure of (2) contains a [CoIII(salophen)(tb)2]+ complex with a remarkably twisted salophen ligand. Both complexes, (1) and (2), contain approximately one disordered CHCl3 molecule per Co in the solid state.  相似文献   

7.
Three new Cu(II)-Ln(III) heterometallic coordination polymers based on two N-heterocyclic carboxylic ligands, {[LnCu(L1)2(L2)(H2O)2]·mH2O} n (Ln = La(1), Nd(2), Gd(3), m = 2 (for 1), 1 (for 2, 3), H2L1 = quinolinic acid, HL2 = nicotinic acid), have been synthesized and characterized. 1 has a two-dimensional (2D) layer structure with a Schl?fli symbol of (44.62), while complexes 2 and 3 are isostructural and have three-dimensional (3D) structures with a Schl?fli symbol of (3.4.5)2(32.42.52.614.74.83.9)(32.63.7) of 3-nodal net. Magnetic investigations suggest that antiferromagnetic coupling exists between NdIII and CuII in 2, while weak ferromagnetic coupling between GdIII and CuII in 3. The difference of magnetic properties between 2 and 3 has been discussed.  相似文献   

8.
Three novel coordination polymers, {[Co(L)(SO4)(H2O)](CH3OH)} (1), {[Cd(L)2(SiF6)](H2O)} (2) and [Zn(L)(NO3)2] (3), synthesized from 1,4-di(benzimidazole-1-yl)benzene (L), have been characterized by infrared spectroscopy, elemental analysis and single crystal X-ray diffraction. Compounds 1–3 exhibit different structures. Complex 1 has a 3-D diamond network containing 1-D CoII chains connected by SO 4 2? · anions; 2 has a 3-D-Po framework with 1-D porous channels along the c axis; and 3 has a 1-D zig-zag chain structure with a 2-D supramolecular network based on π-π interactions. The magnetic properties of 1 and the solid state fluorescence spectra of 2 and 3 have also been explored.  相似文献   

9.
Two series of complexes of the types trans-[CoIII(Mebpb)(amine)2]ClO4 {Mebpb2− = N,N-bis(pyridine-2-carboxamido)-4-methylbenzene dianion, and amine = pyrrolidine (prldn) (1a), piperidine (pprdn) (2a), morpholine (mrpln) (3a), benzylamine (bzlan) (4a)}, and trans-[CoIII(cbpb)(amine)2]X {cbpb2− = N,N-bis(pyridine-2-carboxamido)-4-chlorobenzene dianion, and amine = pyrrolidine (prldn), X = PF6 (1b), piperidine (pprdn), X = PF6 (2b), morpholine (mrpln), X = ClO4 (3b), benzylamine (bzlan), X = PF6 (4b)} have been synthesized and characterized by elemental analyses, IR, UV–Vis, and 1H NMR spectroscopy. The crystal structure of 1a has been determined by X-ray diffraction. The electrochemical behavior of these complexes, with the goal of evaluating the effect of axial ligation and equatorial substitution on the redox properties, is also reported. The reduction potential of CoIII, ranging from −0.53 V for (1a) to −0.31 V for (3a) and from −0.48 V for (1b) to −0.22 V for (3b) show a relatively good correlation with the σ-donor ability of the axial ligands. The methyl and chloro substituents of the equatorial ligand have a considerable effect on the redox potentials of the central cobalt ion and the ligand-centered redox processes.  相似文献   

10.
Four homochiral coordination polymers incorporating two chiral reduced Schiff base ligands, namely, [Cu(L1)(H2O)]·H2O (1), [Zn2(L2)2] (2), [Co(L2)(H2O)] (3), and [Ni(L2)(H2O)] (4) (H2L1 = N-(4-carboxyl)benzyl-l-alanine, H2L2 = N-(4-carboxyl)benzyl-l-leucine) have been obtained by hydrothermal methods and characterized by physico-chemical and spectroscopic methods. X-ray crystallographic analysis reveals that complex 1 exhibits a chain structure with 1D channels. Complexes 24 all are 3D network structures with 1D channels in which the isobutyl group of the ligand points toward to the channel. Complex 2 displays strong photoluminescent emission in the purple region.  相似文献   

11.
The interaction of the enantiopure (R)- and (S)-1-phenyl-N,N-bis(pyridine-3- ylmethyl)ethanamine ligands, R-L 1 and S-L 1 , with copper(II) chloride followed by addition of hexafluorophosphate resulted in the isolation of the corresponding enantiomeric complexes [Cu(R-L 1 )Cl](PF6) (1), [Cu(S-L 1 )Cl](PF6) (2) and [Cu(S-L 1 )Cl](PF6)??0.5Et2O (3), in which dimerization occurs through two long Cu??????Cl interactions, the ??-chloro bridges being thus strongly asymmetric. The organic ligand is bound to the metal centre via its N3-donor dipyridylmethylamine fragment in a planar fashion, such that each copper centre is in a square planar environment (or distorted square pyramidal with a long axial bond length if the additional interaction is considered). When R,S-L 1 was employed in a parallel synthesis, the similar racemic complex [Cu(R,S-L 1 )Cl](PF6)??0.5MeOH (4) was obtained, in which the L 1 ligands in each dimeric unit have opposite hands. In contrast to the complexes of L 1 , the reaction of Cu(II) chloride with the related ligand, (R)-1-cyclohexyl-N,N-bis(pyridine-3-ylmethyl)ethanamine (R-L 2 ), yielded the mononuclear complex [Cu(R,S-L 2 )Cl2] (5), displaying a distorted square pyramidal coordination geometry. The structure of this product along with its corresponding circular dichroism spectrum revealed that racemisation of the starting R-L 2 ligand has occurred under the relatively mild (basic) conditions employed for the synthesis. A temperature-dependent magnetic studies of the complexes 1, 2 and 5 indicate that a week ferromagnetic interaction is operative in each dicopper core in 1 and 2 with 2J?=?1.2?cm?1. On the other hand, a week antiferromagnetic intermolecular interaction is operative for 5.  相似文献   

12.
Reactions of Ni(NO3)2 · 6H2O) in EtOH(iso-PrOH) with optically active bis(menthane) ethylene-diaminodioxime (H2L1), pinano-para-menthane ethylenediaminodioxime (H2L2), pinano-para-menthane propylenediaminodioxime (H2L3) and bis(pinane) propylenediaminodioxime (H2L4) were used to synthesize [Ni(H2L1)NO3[NO3 · 2H2O (I), [Ni(HL2)]NO3 (II), [Ni(HL3)]NO3 (III), and [Ni(HL4)]NO3 (IV). X-ray diffraction study of paramagnetic complex Ieff = 3.04 μB and diamagnetic complexes II and III revealed their ionic structures. A distorted octahedral polyhedron N4O2 in the cation of complex I is formed by the N atoms of tetradentate cycle-forming ligand, i.e., the H2L1 molecule, and the O atoms of the NO 3 ? anion acting as a bidentate cyclic ligand. In the cations of complexes II and III, containing a pinane fragment, the coordination core NiN4 has the shape of a distorted square formed on coordination of tetradentate cycle-forming ligands, i.e., anions of the starting dioximes. The structure of diamagnetic complex IV is likely to be similar to the structures of complexes II and III.  相似文献   

13.
The first MnIII complexes with Schiff bases and tricyanomethanide-anion were synthesized: [Mn(salen)C(CN)3(H2O)] (1), [Mn(5-Brsalen)C(CN)3(H2O)] (2), [Mn(salpn)C(CN)3(H2O)] (3), [Mn(3-MeOsalen)C(CN)3(H2O)] (4), [Mn(5-Brsalen)(MeOH)(H2O)][C(CN)3] (5), and [Mn(3-MeOsalpn)(H2O)2][C(CN)3] (6), where SalenH2 is N,N′-bis(salicylidene)ethylenediamine, 5-BrsalenH2 is N,N′-bis(5-bromosalicylidene)ethylenediamine, SalpnH2 is N,N′-bis-(salicylidene)-1,3-diaminopropane, 3-MeOsalenH2 is N,N′-bis(3-methoxysalicylidene)-ethylenediamine, 3-MeOsalpnH2N,N′-bis(3-methoxysalicylidene)-1,3-diaminopropane. The tricyanomethanide anion in complexes 14 acts as a the terminal ligand, whereas in complexes 5 and 6 tricyanomethanide is not coordinated by MnIII and acts as an out-of-sphere counterion. The structures of complexes 14 are characterized by the formation of dimers due to hydrogen bonds between the water molecules and oxygen atoms of the Schiff bases. The Mn...Mn distances inside the dimers are 4.69–5.41 Å. Complex 6 has a zigzag chain structure consisting of the [Mn(3-MeOsalpn)(H2O)2]+ cations bound by double bridging aqua ligands. The study of the magnetic properties of complexes 1, 3, 4, and 6 showed the existence of antiferromagnetic interactions between the MnIII ions through the system of hydrogen bonds.  相似文献   

14.
Seven new cobalt(II) complexes based on the Schiff bases, 2,6-diacetylpyridine bis(isonicotinoylhydrazone) (H2L1) and 2,6-diacetylpyridine bis(nicotinoylhydrazone) (H2L2), are synthesized and studied by X-ray diffraction analysis: [Co(H2L1)(NCS)2] · 2.25H2O (I), [Co(H2L2)(NCS)2] · CH3OH (II), [Co(H2L2)(NCS)(H2O)]NCS (III), [Co(H4L1)(NCS)2](NO3)2 · 2H2O (IV), [Co(H4L1)(NCS)2][Co(NCS)4] · 0.75H2O (V), [Co(H4L2)(NCS)2][Co(NCS)4] · 1.75H2O (VI), and [Co(H2L2)(NCS)(CH3OH)]2[Co(NCS)4] · 2CH3OH (VII) (CIF files CCDC 941186 (I), 1457906 (Ia), 1457905 (II), 941187 (III), 1457907 (IV), 1457908 (V), 1457909 (VI), and 941188 (VII)). The organic ligands in the complexes act as pentadentate neutral H2L or doubly protonated (H4L)2+ coordinated through the same set of donor atoms N3O2. In all compounds IVII, the coordination polyhedron of the Co2+ ion in a complex with the Schiff bases has a shape of a pentagonal bipyramid. The hydrazones are arranged in the equatorial plane of the bipyramid. Its axial vertices are occupied by the nitrogen atoms of the NCS ̄ anions in compounds I, II, and IV–VI and by the nitrogen atoms of NCS ̄ and oxygen of the water molecule in compound III or methanol in compound VII. The NO 3 - anions or [Co(NCS)4]2 ̄ complex anions obtained by the reactions are involved along with the NCS ̄ anions in the formation of compounds IV–VII.  相似文献   

15.
Four new mononuclear triazido-cobalt(III) complexes [Co(L 1/2/4 )(N3)3] and [Co(L 3 )(N3)3]·CH3CN where L 1  = [(2-pyridyl)-2-ethyl]-(2-pyridylmethyl)-N-methylamine, L 2  = [(2-pyridyl)-2-ethyl]-[6-methyl-(2-pyridylmethyl)]-N-methylamine, L 3  = [(2-pyridyl)-2-ethyl]-[3,5-dimethyl-4-methoxy-(2-pyridylmethyl)]-N-methylamine, and L 4  = [(2-pyridyl)-2-ethyl]-[3,4-dimethoxy-(2-pyridylmethyl)]-N-methylamine, respectively, were synthesized and structurally characterized. The four complexes were characterized by elemental microanalyses, IR and UV–VIS spectroscopy and X-ray single crystal crystallography. The complexes display two strong IR bands over the frequency region 2,020–2,050 cm?1 assigned for the asymmetric stretching frequency, νa(N3) of the coordinated azides indicating facial geometry. The molecular structure determinations of the complexes were in complete agreement with fac-[Co(L)(N3)3] conformation in distorted octahedral Co(III) environment.  相似文献   

16.
Four new complexes, [Cu2(Bpca)2(L1)(H2O)2] · 3H2O (I), [Cu2(Bpca)2(L2)(H2O)2] (II), [Cu2(Bpca)2(L3)] · 2H2O (III), [Cu2(Bpca)2(L1)(H2O)] · 2H2O (IV) (Bpca = bis(2-pyridylcarbonyl)amido, H2L1 = glutaric acid, H2L2 = adipic acid, H2L3 = suberic acid, H2L4 = azelaic acid) have been synthesized and characterized by single-crystal X-ray diffraction methods (CIF files CCDC nos. 1432836 (I), 1432835 (II), 817411 (III), and 817412 (IV)), elemental analyses, IR spectra. Structural analyses reveal that compounds I, II, and IV have similar structures [Cu(Bpca)]+ units bridged by dicarboxylate forming dinuclear units, whereas the dinuclear of compound III are edge-shared through two carboxylate oxygen atoms of different suberate anions. Hydrogen bonds are response for the supramolecular assembly of compounds I to IV. The temperature-dependent magnetic property of III was also investigated in the temperature range of 2 to 300 K, and the magnetic behaviour suggests weak antiferromagnetic coupling exchange.  相似文献   

17.
The reaction of different macrocyclic metallic tectons and dicarboxylic acid ligand yielded six new coordination polymers, namely, {[(NiL1)(4,4'-Bpdc)] ? DMF ? 2.5H2O} n (I), {[(NiL2)(4,4'-Bpdc)] ? DMF ? 2.5H2O} n (II), [(NiL3)2(4,4'-Bpdc)1.5][(NiL3)(4,4'-Bpdc)] ? ClO4 ? 28H2O (III), {[(NiL4)(4,4'-Bpdc)] ? 4H2O} n (IV), {[(NiL5)(4,4'-Tpdc)] ? 5H2O} n (V), {[(NiL3)(4,4'-Tpdc)]} n (VI) (L1 = 1,4,7,9,12,14-hexaaza-tricyclo[12.2.1.14.7]octadecane, L2 = 1,3,10,12,15,18-hexaazatetracyclo[16.2.1.112.15.04.9]docosane, L3 = 11-methyl-1,4,8,10,13,15-hexaaza-tricyclo[13.3.1.14.8]icosane, L4 = 1,3,10,12,16,19-hexaazate-tracyclo[17.3.1.1.12.16,04.9]tetracosane, L5 = 1,4,8,10,13,15-hexaaza-tricyclo[13.3.1.14.8]icosane, 4,4'-Bpdc = 4,4'-biphenyldicarboxylic acid and 4,4'-Tpdc = 4,4'-terphenyldicarboxylic acid) (CIF files CCDC nos. 1055545–1055550 for I–VI, respectively). Except for the different conformations of the macrocyclic metallic tectons or dicarboxylic acid ligands, complexes I–VI crystallized under the same environment, however, they exhibit diverse packing mode of infinite 1D coordination polymers, showing macrocyle or dicarboxylic acid ligand regulated self-assemble. The solid states UV-Vis for complexes I–VI also have been investigated.  相似文献   

18.
A series of new tin(IV) complexes based on 2-hydroxy-3,6-di-tert-butyl-para-benzoquinone (LH) of the general formula L2SnR2 (R = Me (I), Et (II), Bu n (III), Ph (IV)) and LSnMe3 (V) were synthesized. The obtained compounds were characterized by IR and 1H, 13C and 119Sn NMR spectroscopy and elemental analysis. The X-ray diffraction analysis was carried out for complexes L2Sn(Bu n )2 (III) and LSnMe3 (V). The low-frequency region of the IR spectra, which has not earlier been studied in detail, was interpreted for compounds I–V and previously described complex LSnPh3 (VI). The electrochemical properties of LH and related tin complexes I–VI were studied. The nature of the hydrocarbon groups at the metal atom affects the stability of the intermediates formed in the electrochemical reactions.  相似文献   

19.
The results of syntheses and X-ray diffraction analyses of mononuclear complexes [ML2(H2O)4] (M = Co2+(I), Cu2+(II), and Zn2+(III)) containing water molecules and anions of acetic acid α-(N-benzoxazolin-2-one) (L = C9H6O4) are presented. The crystals of complexes I–III are isostructural (space group P21/n, Z = 2) and are built of discrete neutral complex molecules. The crystallographic data are as follows: for complex I, a = 6.1470(5), b = 5.3310(3), c = 30.5894(17) Å, β = 95.056(6)°, V = 998.50(11) Å3; for complex II, a = 5.9661(6) Å, b = 5.1414(4) Å, c = 32.672(2) Å, β = 92.395(6)°, V = 1001.33(14) Å3; and for complex III, a = 6.1404(3) Å, b = 5.3476(2) Å, c = 30.5865(12) Å, β = 94.708(4)°, V = 1000.96(7) Å3. The metal atoms (M) of the complexing agents are localized in the crystallographic symmetry centers and have a distorted octahedral environment due to two oxygen atoms of the carboxy groups of two monodentate ligands (L) and four water molecules. The M-O(1w)(H2O) and M-O(2w)(H2O) bond lengths for the indicated complexes are 2.088(3) and 2.118(3), 2.446(3) and 1.971(3), and 2.113(4) and 2.093(3) Å for M = Co2+, Cu2+, and Zn2+, respectively. The crystal structures are formed due to packing of chains built of inter-molecular hydrogen bonds O-H…O.  相似文献   

20.
A series of copper(II) complexes, [Cu(L1)(NCS)] (I), [CuBr(L2)] (II), and [CuCl(L3)] (III), where L1, L2, and L3 are 2,4-dibromo-6-[(pyridin-2-ylmethylimino)methyl]phenolate, 4-chloro-2-[(pyridin-2-ylmethylimino)methyl]phenolate, and 1-[(pyridin-2-ylmethylimino)methyl]-naphthalen-2-ol, respectively, were prepared. The complexes were characterized by elemental analysis, IR spectra, and single crystal X-ray determination. The crystals of the three complexes crystalize in the monoclinic space group P21/n. For I, a = 8.127(2), b = 13.077(3), c = 14.967(3) Å, β = 91.975(2)°, V = 1589.8(6) Å3, Z = 4. For II, a = 7.736(2), b = 10.613(2), c = 16.199(3) Å, β = 91.130(2)°, V = 1329.8(5) Å3, Z = 4. For III, a = 8.062(2), b = 8.599(2), c = 21.087(2) Å, β = 100.338(2)°, V = 1438.1(4) Å3, Z = 4. The Cu atom in each of the complexes is in square planar geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号