首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A comparative study on the mechanical and dielectric relaxation behavior of poly(5‐acryloxymethyl‐5‐methyl‐1,3‐dioxacyclohexane) (PAMMD), poly(5‐acryloxymethyl‐5‐ethyl‐1,3‐dioxacyclohexane) (PAMED), and poly(5‐methacryloxymethyl‐5‐ethyl‐1,3‐dioxacyclohexane) (PMAMED) is reported. The isochrones representing the mechanical and dielectric losses present prominent mechanical and dielectric β relaxations located at nearly the same temperature, approximately −80°C at 1 Hz, followed by ostensible glass–rubber or α relaxations centered in the neighborhood of 27, 30, and 125°C for PAMMD, PAMED, and PMAMED, respectively, at the same frequency. The values of the activation energy of the β dielectric relaxations of these polymers lie in the vicinity of 10 kcal mol−1, ∼ 2 kcal mol−1 lower than those corresponding to the mechanical relaxations. As usual, the temperature dependence of the mean‐relaxation times associated with both the dielectric and mechanical α relaxations is described by the Vogel–Fulcher–Tammann–Hesse (VFTH) equation. The dielectric relaxation spectra of PAMED and PAMMD present in the frequency domain, at temperatures slightly higher than Tg, the α and β relaxations at low and high frequencies, respectively. The high conductive contributions to the α relaxation of PMAMED preclude the possibility of isolating the dipolar component of this relaxation in this polymer. Attempts are made to estimate the temperature at which the α and β absorptions merge together to form the αβ relaxation in PAMMD and PAMED. Molecular Dynamics (MD) results, together with a comparative analysis of the spectra of several polymers, lead to the conclusion that flipping motions of the 1,3‐dioxacyclohexane ring may not be exclusively responsible for the β‐prominent relaxations that polymers containing dioxane and cyclohexane pendant groups in their structure present, as it is often assumed. The diffusion coefficient of ionic species, responsible for the high conductivity exhibited by these polymers in the α relaxation, is semiquantitatively calculated using a theory that assumes that this process arises from MWS effects, taking place in the bulk, combined with Nernst–Planckian electrodynamic effects, due to interfacial polarization in the films. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2486–2498, 1999  相似文献   

2.
The relaxation behavior of poly(5-acryloxymethyl-5-methyl-1,3-dioxacyclohexane), a polymer containing highly flexible side groups, is studied by broadband dielectric spectroscopy in the frequency and temperature ranges 10(-1)-10(9) Hz and 123-473 K, respectively. Above the glass transition temperature T(g) the dielectric loss in the frequency domain exhibits a prominent alpha absorption, followed in increasing order of frequencies by two secondary absorptions called beta and gamma. At temperatures slightly higher than T(g), the a relaxation is well separated from the beta, but as temperature increases overlapping between both relaxations augments forming an alphabeta absorption in the vicinity of 420 K. This latter absorption displays a shoulder on its high-frequency side corresponding to the y relaxation. The strength of the a relaxation decreases with increasing temperature, eventually vanishing at the temperature at which the alphabeta absorption is formed. The time retardation spectra of the isotherms are calculated and further used to facilitate the deconvolution of the overlapping relaxations. The fact that the temperature dependence of the beta relaxation also describes that of the alphabeta absorption suggests that both relaxations have the same nature. It seems that as temperature increases, the a relaxation feeds on the beta absorption until its complete disappearance. The gamma relaxation, in turn, seems to increase at the expense of the alphabeta process at high temperature.  相似文献   

3.
From high‐resolution dielectric spectroscopy measurements on 1,4‐polybutadiene (1,4‐PB), we show that in addition to the structural α‐relaxation and higher frequency secondary relaxations in the spectra, a nearly constant loss (NCL) is observed at shorter times/lower temperatures. The properties of this NCL are compared to those of another chemically similar polymer, 1,4‐polyisoprene. The secondary relaxations in 1,4‐PB include the well‐known Johari‐Goldstein (JG) β‐relaxation and two other higher‐frequency peaks. One of these, referred to as the γ‐relaxation, falls between the JG‐relaxation and the NCL. Seen previously by others, this γ‐relaxation in 1,4‐PB is not the JG‐process and bears no relation to the glass transition. At very low temperatures (<15 K), we confirm the existence of a very fast secondary relaxation, having a weak dielectric strength and an almost temperature‐invariant relaxation time. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 342–348, 2007  相似文献   

4.
Mixtures of a polar solute 4-n-pentyl-4'-cyanobiphenyl in a non-polar nematic solvent exhibit two separated low frequency dielectric relaxations for concentrations of the solute between 2 mol% and 20 mol% over a limited temperature range. This behaviour is attributed to coexisting nematic and smectic B phases, in which the polar solute probe has different relaxation frequencies. The observed dielectric spectra can be accurately fitted to two Debye-like relaxations, and the strengths of the absorptions are proportional to the amounts of the coexisting phases. A microscopic determination of the phase diagram confirms the assignment of the coexisting phases, and it is concluded that there is a preference of the dipolar probe molecule for the smectic B phase, which is induced as a result of solute-solvent interactions.  相似文献   

5.
The dielectric spectra of aerosol OT[AOT, sodium(bis-2-ethylhexyl)sulfosuccinate]/water systems at different concentrations and temperatures were investigated by the dielectric relaxation spectroscopy(DRS). Through the dielectric spectra of different concentrations, two dielectric relaxations were observed over a frequency range from 40 Hz to 110 MHz and the mechanisms of the relaxations were also interpreted based on the Grosse’s model. The low-frequency relaxation(around 105 Hz) was attributed to the radial diffusion of counterions along the long-half axis of the rod-like micelle, and the high-frequency relaxation(around 106 Hz) was ascribed to the radial diffusion of counterions along the short-half axis. Furthermore, specific emphasis was placed on studying the effects of temperature on system’s conductivity. It was observed that the low-frequency limit of conductivity(κl) decreased and then increased with the increment of temperature under the measured concentration. On the other hand, the conductivity(κm and κh) in meso- and high-frequency ranges always increased as temperature increased. Both the tendencies of alteration which mentioned above should be related to the phase transition of AOT/water system.  相似文献   

6.
Dynamic properties, derived from dielectric relaxation spectra of glass-formers at variable temperature and pressure, are used to characterize and classify any resolved or unresolved secondary relaxation based on their different behaviors. The dynamic properties of the secondary relaxation used include: (1) the pressure and temperature dependences; (2) the separation between its relaxation time taubeta and the primary relaxation time taualpha at any chosen taualpha; (3) whether taubeta is approximately equal to the independent (primitive) relaxation time tau0 of the coupling model; (4) whether both taubeta and tau0 have the same pressure and temperature dependences; (5) whether it is responsible for the "excess wing" of the primary relaxation observed in some glass-formers; (6) how the excess wing changes on aging, blending with another miscible glass-former, or increasing the molecular weight of the glass-former; (7) the change of temperature dependence of its dielectric strength Deltaepsilonbeta and taubeta across the glass transition temperature Tg; (8) the changes of Deltaepsilonbeta and taubeta with aging below Tg; (9) whether it arises in a glass-former composed of totally rigid molecules without any internal degree of freedom; (10) whether only a part of the molecule is involved; and (11) whether it tends to merge with the alpha-relaxation at temperatures above Tg. After the secondary relaxations in many glass-formers have been characterized and classified, we identify the class of secondary relaxations that bears a strong connection or correlation to the primary relaxation in all the dynamic properties. Secondary relaxations found in rigid molecular glass-formers belong to this class. The secondary relaxations in this class play the important role as a precursor or local step of the primary relaxation, and we propose that only they should be called the Johari-Goldstein beta-relaxation.  相似文献   

7.
Stretched polyethylene has been used for several years by organic spectroscopists as a means of orienting isolated aromatic molecules. Dielectric relaxation studies are reported which consider dipolar aromatic molecules dissolved in stretched polyethylene in order to learn more about the environment of these oriented molecules. The research builds on earlier studies of the dielectric relaxation behavior of dipolar aromatic molecules dissolved in unoriented low density polyethylene. Studies demonstrate that molecules in the amorphous phase are oriented at temperatures below the glass transition, both the β and γ relaxations being orientation dependent. It is shown through studies of oriented rods that large numbers of the orientable molecules are immobilized by the oriented polyethylene and cannot relax. An essential criterion for immobilization to occur is that molecules exhibit geometrical symmetry.  相似文献   

8.
The non-Debye relaxation behavior of hyperbranched polyglycerol was investigated by broadband dielectric spectroscopy. A thorough study of the relaxations was carried out paying special attention to truncation effects on deconvolutions of overlapping processes. Hyperbranched polyglycerol exhibits two relaxations in the glassy state named in increasing order of frequency beta and gamma processes. The study of the evolution of these two fast processes with temperature in the time retardation spectra shows that the beta absorption is swallowed by the alpha in the glass-liquid transition, the gamma absorption being the only relaxation that remains operative in the liquid state. In heating, a temperature is reached at which the alpha absorption vanishes appearing the alphagamma relaxation. Two characteristics of alpha absorptions, decrease of the dielectric strength with increasing temperature and rather high activation energy, are displayed by the alphagamma process. Williams' ansatz seems to hold for these topologically complex macromolecules.  相似文献   

9.
The effects of hydrostatic pressure to 20 kbar on the β molecular relaxation process of polyvinylidene fluoride (PVDF) and on the dielectric properties in the neighborhood of this relaxation have been investigated. This relaxation has a strong influence on the electrical and mechanical properties of PVDF. Pressure causes a large shift to higher temperatures (~ 10K/kbar) of the dielectric relaxation peak and a decrease in the width of the distribution of relaxation times. This slowing down of the relaxation process is discussed in terms of the Vogel–Fulcher equation and related models, and it results from an increase in both the energy barrier to dipolar motion and the reference temperature (T0) for the kinetic relaxation process which represents the “static” dipolar freezing temperature for the process. The general applicability of the Vogel–Fulcher equation to relaxional processes in polymers and other systems is briefly discussed. The pressure dependence of the dielectric constant both above and below the relaxation peak temperature (Tmax) is found to be dominated by the change in polarizability. The effect is larger above Tmax because of the relatively large decrease in the dipolar orientational polarizability with pressure.  相似文献   

10.
Interactions and dynamics in ionic liquids   总被引:1,自引:0,他引:1  
Precise dielectric spectra have been determined at 25 degrees C over the exceptionally broad frequency range of 0.1 相似文献   

11.
Broadband dielectric spectroscopy is used to investigate molecular dynamics and charge transport in three hyperbranched polyester amides with hydroxyl, phenyl, and stearate terminal groups. At higher temperatures, the dielectric spectra are interpreted in terms of hopping conduction in a spatially randomly varying energy landscape, whereas two secondary dipolar relaxations attributed to librations of the terminal and amide groups dominate the low temperature regime. Despite a shift of more than 3 decades in the dc conductivity upon variation of the end groups, the Barton–Nakajima–Namikawa relation is shown to hold. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1651–1657, 2010  相似文献   

12.
Complex shear modulus at 33 kc./sec. is measured at temperatures of ?150–150°C. for amorphous selenium and crystalline selenium with different crystallinities. The dielectric relaxation at 10 kc./sec. to 3 kc./sec. to 3 Mc./sec. is observed at temperatures of ?32–25°C. for iodine-doped crystalline selenium. It is concluded from the results of this study and of others' that selenium exhibits four relaxations, α, β γ, and δ, in order of descending temperature. The β relaxation is observed only in the amorphous sample above the glass temperature and is assigned to the primary relaxation. The α, γ, and δ relaxations are found in the crystalline selenium. The α relaxation, which is prominent in a highly crystalline sample, is assigned to the crystalline relaxation. The γ and δ relaxations increase in peak height with decreasing crystallinity and are attributed to the disordered region in the crystalline selenium. The dispersion map (logarithm of frequency versus reciprocal absolute temperature of loss maximum) of selenium is presented.  相似文献   

13.
Dynamic mechanical and dielectric relaxational behavior of poly(monoethylphenyl itaconate) at different frequencies and temperatures was studied. Three relaxation zones are found. The dynamic mechanical response is dominated by a relaxation peak at room temperature, labeled β relaxation. Two prominent shoulders labelled as γ and α relaxations are observed. Because of the overlapping of the α and γ with the β relaxation, a deconvolution method to improve the understanding of these phenomena is proposed. In spite of the complexity of the experimental spectra, the proposed deconvolution method seems to be a convenient approach to interpret the relaxational behavior of this polymer. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2749–2756, 1997  相似文献   

14.
The relaxation behavior of poly(2,3-dichlorobenzyl methacrylate) is studied by broadband dielectric spectroscopy in the frequency range of 10(-1)-10(9) Hz and temperature interval of 303-423 K. The isotherms representing the dielectric loss of the glassy polymer in the frequency domain present a single absorption, called beta process. At temperatures close to Tg, the dynamical alpha relaxation already overlaps with the beta process, the degree of overlapping increasing with temperature. The deconvolution of the alpha and beta relaxations is facilitated using the retardation spectra calculated from the isotherms utilizing linear programming regularization parameter techniques. The temperature dependence of the beta relaxation presents a crossover associated with a change in activation energy of the local processes. The distance between the alpha and beta peaks, expressed as log(fmax;beta/fmax;alpha) where fmax is the frequency at the peak maximum, follows Arrhenius behavior in the temperature range of 310-384 K. Above 384 K, the distance between the peaks remains nearly constant and, as a result, the a onset temperature exhibited for many polymers is not reached in this system. The fraction of relaxation carried out through the alpha process, without beta assistance, is larger than 60% in the temperature range of 310-384 K where the so-called Williams ansatz holds.  相似文献   

15.
We present results obtained by dielectric spectroscopy in wide frequency (10(-2)-10(9) Hz) and temperature ranges on human hemoglobin in the three different solvents water, glycerol, and methanol, at a solvent level of 0.8 g of solvent/g of protein. In this broad frequency region, there are motions on several time-scales in the measured temperature range (110-370 K for water, 170-410 K for glycerol, and 110-310 K for methanol). For all samples, the dielectric data shows at least four relaxation processes, with frequency dependences that are well described by the Havriliak-Negami or Cole-Cole functions. The fastest and most pronounced process in the dielectric spectra of hemoglobin in glycerol and methanol solutions is similar to the alpha-relaxation of the corresponding bulk solvent (but shifted to slower dynamics due to surface interactions). For water solutions, however, this process corresponds to earlier results obtained for water confined in various systems and it is most likely due to a local beta-relaxation. The slowing down of the glycerol and methanol relaxations and the good agreement with earlier results on confined water show that this process is affected by the interaction with the protein surface. The second fastest process is attributed to motions of polar side groups on the protein, with a possible contribution from tightly bound solvent molecules. This process is shifted to slower dynamics with increasing solvent viscosity, and it shows a crossover in its temperature dependence from Arrhenius behavior at low temperatures to non-Arrhenius behavior at higher temperatures where there seems to be an onset of cooperativity effects. The origins of the two slowest relaxation processes (visible at high temperatures and low frequencies), which show saddlelike temperature dependences for the solvents water and methanol, are most likely due to motions of the polypeptide backbone and an even more global motion in the protein molecule.  相似文献   

16.
We present an extensive set of radio wave dielectric relaxation spectroscopy measurements of aqueous suspensions of different size unilamellar L-alpha-dipalmitoylphosphatidylcholine (DPPC) vesicles, in a temperature range between 15 and 55 C, where the lipidic bilayer experiences structural transitions from the gel to the rippled phase (at the pretransition temperature) and from the rippled to the liquid phase (at the main transition temperature). The dielectric spectra have been analyzed in the light of the Cole-Cole relaxation function, and the main dielectric parameters-the dielectric increment Deltaepsilon and the mean relaxation frequency omega(0)--have been evaluated as a function of temperature. These parameters display a very complex phenomenology, depending on the structural arrangement of the lipid-water interface. The structural parameters that govern the dielectric behavior of these systems associated with the lipid bilayer have been recognized within a recent dynamic mean-field model we have proposed, aimed to predict the dipolar relaxation of an array of strongly interacting dipoles anchored to a flat or corrugated surface. They are the prefactor A(T) of the distance-dependent part of the effective dipolar interaction energy, the term Gamma(vis), that takes into account the damping of the dipolar motion, the average dipolar distance related to the area a(0) per polar head, and the bilayer thickness. The present analysis furnishes, from a phenomenological point of view, the dependence of these parameters on the temperature and on the vesicle size.  相似文献   

17.
Interaction of poly(vinyl alcohol) (PVA) with fumed silica was investigated in the gas phase and aqueous media using adsorption, broadband dielectric relaxation spectroscopy (DRS), thermally stimulated depolarization current (TSDC), infrared spectroscopy, thermal analysis, and one-pass temperature-programmed desorption (OPTPD) mass-spectrometry (MS) methods. PVA monolayer formation leads to certain textural changes in the system (after suspension and drying) because of strong hydrogen bonding of the polymer molecules to silica nanoparticles preventing strong interaction between silica particles themselves. This strong interaction promotes associative desorption of water molecules at lower temperatures than in the case of silica alone. Interaction of PVA with silica and residual water leads to depression of glass transition temperature (T(g)). There are three types of dipolar relaxations at temperatures lower and higher than the T(g) value. A small amount of adsorbed water leads to significant conductivity with elevating temperature.  相似文献   

18.
Dielectric monitoring of the adsorption or release process of salicylic acid (SA) by chitosan membrane shows that the dielectric spectra of the chitosan membrane/ SA solution systems change regularly in the adsorption or release process. By analyzing the regularity, a new mechanism for the relaxations is proposed. The concentration polarization layer (CPL) caused by SA adsorption or release is confirmed to be essential for the dielectric relaxations. The changes of the spectra with time are explained by account of the relationship between CPL properties and dielectric strength. Based on this relaxation mechanism, a theoretical method can be established to calculate dynamical parameters of inner structure of the adsorption or release systems from their dielectric spectra. Therefore, dielectric spec- troscopy is demonstrated to be a promising method for estimating interfacial distribution of ionic sub- stances and their binding to membrane in a non-invasive way.  相似文献   

19.
The dynamic behaviors of ionic liquid samples consisting of a series of 1‐alkyl‐3‐methylimidazolium cations and various counteranionic species are investigated systematically over a wide frequency range from 1 MHz to 20 GHz at room temperature using dielectric relaxation (DR) and nuclear magnetic resonance (NMR) spectroscopies. DR spectra for the ionic liquids are reasonably deconvoluted into two or three relaxation modes. The slowest relaxation times are strongly dependent upon sample viscosity and cation size, whereas the relaxation times of other modes are almost independent of these factors. We attribute the two slower relaxation modes to the rotational relaxation modes of the dipolar cations because the correlation times of the cations evaluated using longitudinal relaxation time (T1 13C NMR) measurements corresponded to the dielectric relaxation times. On the other hand, the fastest relaxation mode is presumably related to the inter‐ion motions of ion‐pairs formed between cationic and anionic species. In the case of the ionic liquid bis(trifluoromethanesulfonyl)imide, the system shows marked dielectric relaxation behavior due to rotational motion of dipolar anionic species in addition to the relaxation modes attributed to the dipolar cations.  相似文献   

20.
Dielectric response of imidazolium-based room-temperature ionic liquids   总被引:1,自引:0,他引:1  
We have used microwave dielectric relaxation spectroscopy to study the picosecond dynamics of five low-viscosity, highly conductive room temperature ionic liquids based on 1-alkyl-3-methylimidazolium cations paired with the bis((trifluoromethyl)sulfonyl)imide anion. Up to 20 GHz the dielectric response is bimodal. The longest relaxation component at the time scale of several 100 ps reveals strongly nonexponential dynamics and correlates with the viscosity in a manner consistent with hydrodynamic predictions for the diffusive reorientation of dipolar ions. Methyl substitution at the C2 position destroys this correlation. The time constants of the weak second process at the 20 ps time scale are practically the same for each salt. This intermediate process seems to correlate with similar modes in optical Kerr effect spectra, but its physical origin is unclear. The missing high-frequency portion of the spectra indicates relaxation beyond the upper cutoff frequency of 20 GHz, presumably due to subpicosecond translational and librational displacements of ions in the cage of their counterions. There is no evidence for orientational relaxation of long-lived ion pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号