首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleic acid aptamers are short synthetic DNA or RNA sequences that can bind to a wide range of targets with high affinity and specificity. In recent years, aptamers have attracted increasing research interest due to their unique features of high binding affinity and specificity, small size, excellent chemical stability, easy chemical synthesis, facile modification, and minimal immunogenicity. These properties make aptamers ideal recognition ligands for bioanalysis, disease diagnosis, and cancer therapy. This review highlights the recent progress in aptamer selection and the latest applications of aptamer‐based functional probes in the fields of bioanalysis and biomedicine.  相似文献   

2.
Experimentally selected single-stranded DNA and RNA aptamers are able to bind to specific target molecules with high affinity and specificity. Many analytical methods make use of affinity binding between the specific targets and their aptamers. In the development of these methods, thrombin is the most frequently used target molecule to demonstrate the proof-of-principle. This paper critically reviews more than one hundred assays that are based on aptamer binding to thrombin. This review focuses on homogeneous binding assays, electrochemical aptasensors, and affinity separation techniques. The emphasis of this review is placed on understanding the principles and unique features of the assays. The principles of most assays for thrombin are applicable to the determination of other molecular targets.  相似文献   

3.
堵玉林  梁静 《化学通报》2017,80(9):809-818
传统的抗肿瘤药物大多不具有选择性,在临床治疗中产生了严重的毒副作用。核酸适配体是一种小分子核酸,能够与靶标高亲和性、高特异性地结合。选择与癌症发生发展过程密切相关的生物标记物为靶标进行SELEX过程筛选出的核酸适配体自身可作为药物,也可与药物、siRNA、纳米粒等结合构成靶向给药体系,该体系能靶向作用于特定的肿瘤细胞,降低对正常细胞的毒性,用药量显著降低,药效提高。本文综述了近年来核酸适配体直接作为抗肿瘤药物、药物载体、siRNA载体以及作为纳米材料靶向剂构成多元复合靶向给药体系在肿瘤靶向治疗领域的研究进展。  相似文献   

4.
Aptamers are single-strand oligonucleotides that are generated by the systemic evolution of ligands by exponential enrichment (SELEX) technique and that can bind to target molecules specifically. However, only a few aptamers have been developed to date against tumor markers. To utilize aptamers for tumor diagnosis, a variety of aptamers are required. Here, a single-stranded DNA aptamer specific for pro-gastrin-releasing peptide (proGRP), a marker for small cell lung cancer, was selected using SELEX. After selection, identical sequences were found in the DNA library. This sequence was selected and its binding affinity to proGRP was evaluated using surface plasmon resonance.  相似文献   

5.
Poor sensitivity and low specificity of current molecular imaging probes limit their application in clinical settings. To address these challenges, we used a process known as cell‐SELEX to develop unique molecular probes termed aptamers with the high binding affinity, sensitivity, and specificity needed for in vivo molecular imaging inside living animals. Importantly, aptamers can be selected by cell‐SELEX to recognize target cells, or even surface membrane proteins, without requiring prior molecular signature information. As a result, we are able to present the first report of aptamers molecularly engineered with signaling molecules and optimized for the fluorescence imaging of specific tumor cells inside a mouse. Using a Cy5‐labeled aptamer TD05 (Cy5‐TD05) as the probe, the in vivo efficacy of aptamer‐based molecular imaging in Ramos (B‐cell lymphoma) xenograft nude mice was tested. After intravenous injection of Cy5‐TD05 into mice bearing grafted tumors, noninvasive, whole‐body fluorescence imaging then allowed the spatial and temporal distribution to be directly monitored. Our results demonstrate that the aptamers could effectively recognize tumors with high sensitivity and specificity, thus establishing the efficacy of these fluorescent aptamers for diagnostic applications and in vivo studies requiring real‐time molecular imaging.  相似文献   

6.
We report on a rapid method for the detection of Salmonella O8. It does not require an enrichment step but rather uses an aptamer as a probe that was selected by system evolution of ligands by exponential enrichment (SELEX) assay. Firstly, aptamer against Salmonella O8 was selected from a 78 bp random DNA library that was prepared in-vitro. The binding ability of the aptamers to target bacterium was examined by aptamer-linked immobilized sorbent assay. A high affinity aptamer was successfully selected from the initial random DNA pool, and its secondary structure was also investigated. Next, this high affinity aptamer B10 was used to recognize Salmonella O8 via fluorescence microscopy. The selected aptamer has a high specificity and high affinity against its target. We believe that the resulting fluorescence in-situ labeling assay is a potentially useful alternative in rapid screening and detection of foodborne pathogens.
Figure  相似文献   

7.
The development of novel affinity probes for cancer biomarkers may enable powerful improvements in analytical methods for detecting and treating cancer. In this report, we describe our use of capillary electrophoresis (CE) as the separation mechanism in the process of selecting DNA aptamers with affinity for the ovarian cancer biomarker HE4. Rather than the conventional use of cloning and sequencing as the last step in the aptamer selection process, we used high-throughput sequencing on an Illumina platform. This data-rich approach, combined with a bioinformatics pipeline based on freely available computational tools, enabled the entirety of the selection process—and not only its endpoint—to be characterized. Affinity probe CE and fluorescence anisotropy assays demonstrate the binding affinity of a set of aptamer candidates identified through this bioinformatics approach.
Graphical Abstract A population of candidate aptamers is sequenced on an Illumina platform, enabling the process by which aptamers are selected over multiple SELEX rounds to be characterized. Bioinformatics tools are used to identify enrichment of selected aptamers and groupings into clusters based on sequence and structural similarity. A subset of sequenced aptamers may be intelligently chosen for in vitro testing.
  相似文献   

8.
RNA aptamers that bind flavin and nicotinamide redox cofactors   总被引:1,自引:0,他引:1  
RNA molecules that specifically bind riboflavin (Rb) and beta-nicotinamide mononucleotide (NMN) have been isolated by in vitro selection. A simple structural motif containing intramolecular G-quartets was found to bind tightly to oxidized riboflavin (Kd = 1-5 micromolar). DNA versions of the consensus sequence also bind, but with weaker affinity. DMS protection experiments show that the quartet structure of these aptamers is stabilized by interaction with the flavin. As a measure of their redox specificity, the aptamers do not show significant differential binding between oxidized and reduced forms of a 5-deazariboflavin derivative that is a close structural analog of riboflavin. In contrast to the lack of redox specificity of the riboflavin aptamers, RNAs selected for binding to the nicotinamide portion of NAD discriminate between NAD and NADH in solution by over an order of magnitude. A mutagenized pool based on one of the NMN aptamer sequences was used to reselect for NMN binding. Comparison of the reselected sequences led to the identification of the binding region of the aptamer. A complex secondary structure containing two interacting stem-loops is proposed for the minimal NMN-binding RNA. The same mutagenized pool was used to select for increased discrimination between NMN and NMNH. From these reselected sequences, a mutation within the binding region was identified that increases specificity for NMN. These experiments show that RNA can bind these cofactors with low micromolar affinity and, in the case of nicotinamide cofactors, can discriminate between the two redox states. These cofactor binding motifs may provide a framework for generating new ribozymes that catalyze redox reactions similar to those found in basic metabolic pathways.  相似文献   

9.
Several different approaches have been taken to development of homogeneous fluorescent aptamer assays including end-labeled beacons and signaling aptamers which are intrinsically quenched by nucleotides. Two new strategies dubbed "intrachain" and "competitive" FRET-aptamer assays are summarized in this review. Intrachain and competitive FRET-aptamers can be engineered on the molecular level through a series exploratory experiments involving prior knowledge of aptamer secondary or tertiary structures and hypotheses about aptamer conformational changes. However, there is an intrinsic risk of altering aptamer affinity or specificity associated with chemical modifications of an aptamer. Natural selection methods for FRET-aptamers have also been devised to potentially obviate the chemical modification problem. The naturally selected aptamers are subjected to fluorophore (F)- and or quencher (Q)-conjugated nucleotide triphosphate (NTP) incorporation by polymerase chain reaction (PCR) with permissive polymerases such as Deep Vent exo-, but still demonstrate sensitive and specific assay performance despite modified bases, because they are ultimately selected after decoration with F and Q. This paper summarizes work in this area and presents some new examples of the engineered and naturally selected FRET-aptamers for detection of vitamin D.  相似文献   

10.
Since aptamer and its in vitro selection process called SELEX were independently described by Ellington and Gold in 1990, extensive research has been undertaken and numerous isolated aptamers for various targets have been applied. Aptamers can bind to a wide range of targets that include small organic molecules, inorganic compounds, haptens and even whole cells with high binding affinity and specificity. Aptamers for a wide range of targets have been selected currently. In addition, aptamers are thermo stable and can also be regenerated easily within a few minutes denaturation, which makes them easy to store or handle. These advantages make aptamers extremely suitable for applications based on molecular recognition as analytical, diagnostic and therapeutic tools. In this review, the recent applications of aptamers for chemistry analysis, medicine and food security, along with the future trend will be discussed.  相似文献   

11.
Guanine (G)‐rich oligonucleotides have attracted considerable interest as therapeutic agents. Two G‐rich aptamers were selected against epidermal growth factor receptor (EGFR)‐transfected A549 cells, and their G‐rich domains (S13 and S50) were identified to account for the binding of parental aptamers. Circular dichroism (CD) spectra showed that S13 and S50 bound to their targets by forming parallel quadruplexes. Their binding, internalization, and antiproliferation activity in cancer and noncancer cells were investigated by flow cytometry and 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium (MTS) assay, and compared with those of nucleolin‐binding AS1411 and thrombin‐binding aptamer. The two truncated aptamers (S13 and S50) have good binding and internalization in cancer cells and noncancer cells; however, only S50, similar to AS1411, shows potent antiproliferation against cancer cells. Our data suggest that tumor‐selective antiproliferation of G‐rich oligonucleotides does not directly depend on the binding of the G‐rich aptamer to cells.  相似文献   

12.
Liver cancer, as the second cause of cancer death all around the world, resulted in a series of chronic liver diseases. More than 80%of the patients cannot receive effective treatment because of their advanced disease or poor liver function. It is time to improve early clinical diagnosis and find optimal therapeutic treatments. As the tumor cells behave differently from the cell-surface molecules, it is necessary to find a highly specific probe. The aptamers, known as "chemical antibodies", can bind to their target molecules with high affinity and high specificity. The apatmers were obtained by Cell-SELEX, which was aimed at finding the aptamers against whole living cells. In the article, after 19 selections, the ssDNA pool was cloned and sequenced. After that, six aptamers were obtained, named apt_A to apt_F. By incubating the aptamers with different cells, except apt_E, the other aptamers showed high specificity. As for apt_E, which showed high affinity to several cancer cells, was a potential probe for the common protein presented by several different cancer cells. The equilibrium dissociation constants(Kd) were evaluated by measuring the flow cytometry signal that characterized the binding ability of aptamers to the target cells at a series of concentrations ranging from 46.3(4.5) nM to 199.4(44.2) nM, which exposed the high binding affinities of these aptamers. The research in the confocal fluorescence images further confirmed the specificity of these aptamers and the fact that the aptamers were combined with the targets on the cell-surface.  相似文献   

13.
Purines and their derivatives are highly important molecules in biology for nucleic acid synthesis, energy storage, and signaling. Although many DNA aptamers have been obtained for binding adenine derivatives such as adenosine, adenosine monophosphate, and adenosine triphosphate, success for the specific binding of guanosine has been limited. Instead of performing new aptamer selections, we report herein a base-excision strategy to engineer existing aptamers to bind guanosine. Both a Na+-binding aptamer and the classical adenosine aptamer have been manipulated as base-excising scaffolds. A total of seven guanosine aptamers were designed, of which the G16-deleted Na+ aptamer showed the highest bindng specificity and affinity for guanosine with an apparent dissociation constant of 0.78 mm . Single monophosphate difference in the target molecule was also recognizable. The generality of both the aptamer scaffold and excised site were systematically studied. Overall, this work provides a few guanosine binding aptamers by using a non-SELEX method. It also provides deeper insights into the engineering of aptamers for molecular recognition.  相似文献   

14.
Nucleic acid aptamers have been shown many unique applications as excellent probes in molecular recognition. However, few examples are reported which show that aptamers can be internalized inside living cells for aptamer functional studies and for targeted intracellular delivery. This is mainly due to the limited number of aptamers available for cell-specific recognition, and the lack of research on their extra- and intracellular functions. One of the major difficulties in aptamers' in vivo application is that most of aptamers, unlike small molecules, cannot be directly taken up by cells without external assistance. In this work, we have studied a newly developed and cell-specific DNA aptamer, sgc8. This aptamer has been selected through a novel cell selection process (cell-SELEX), in which whole intact cells are used as targets while another related cell line is used as a negative control. The cell-SELEX enables generation of multiple aptamers for molecular recognition of the target cells and has significant advantages in discovering cell surface binding molecules for the selected aptamers. We have studied the cellular internalization of one of the selected aptamers. Our results show that sgc8 is internalized efficiently and specifically to the lymphoblastic leukemia cells. The internalized sgc8 aptamers are located inside the endosome. Comparison studies are done with the antibody for the binding protein of sgc8, PTK7 (Human protein tyrosine kinase-7) on cell surface. We also studied the internalization kinetics of both the aptamer and the antibody for the same protein on the living cell surface. We have further evaluated the effects of sgc8 on cell viability, and no cytotoxicity is observed. This study indicates that sgc8 is a promising agent for cell-type specific intracellular delivery.  相似文献   

15.
We studied aptamer binding events in a heterogeneous format using label-free and fluorescence measurements for the purpose of developing an aptamer-based sandwich assay on a standard microtiter plate platform. The approach allowed visualization of the underlying aptamer immobilization and target binding events rather than relying on only an endpoint determination for method optimization. This allowed for a better understanding of these multi-step assays and optimal conditions specific to aptamers. α-thrombin was chosen as a prototypical analyte as two well-studied aptamers (15 and 29-mer) binding distinct epitopes are available. The Corning Epic? system, which utilizes a resonance waveguide diffraction grating in a 384-well microtiter plate format, was employed to measure relative immobilization and binding levels for various modified aptamers. Parameters investigated included the effects of aptamer orientation, label orientation, spacer length, spacer type, immobilization concentration, and binding buffer. Most notably, the 15-mer aptamer was preferable for capture over the 29-mer aptamer and aptamers with increasing poly(dT) spacer length between the biotin modification and the aptamer yielded decreased immobilization levels. This decreased immobilization resulted in increased α-thrombin binding ability for 15-mer aptamers with the poly(dT) spacer. Fluorescence measurements of fluorescein-labeled 29-mer aptamers with varying spacers were used to visualize sandwich complex formation. Using both label-free and traditional fluorescence measurements, an in-depth understanding of the overall assay was obtained, thus the inclusion of label-free measurements is recommended for future method development.  相似文献   

16.
Capillary electrophoresis based systematic evolution of ligands via exponential enrichment (CE-SELEX) was reported as a homogeneous efficient method for high-affinity selection of aptamer, with several merits involving screening in free solution without nonspecific binding, capable of high-efficient separation, low-sample consumption, and saving money. There are few studies regarding the aptamer selection against small molecule using CE-SELEX, resulting from the aspects of less binding sites and the negligible variety of its complex with nucleic acid in the electrophoretic mobility. In this study, we performed the aptamer selection towards a small molecule target of clenbuterol hydrochloride (Clen) by CE-SELEX. In brief, Clen were first incubated with an 80 nt ssDNA library, and CZE-UV approach was used to separate complex and random ssDNA. The complex was then collected into a vial followed by PCR amplification. Through three round selections, the third library was selected to clone and ten sequences were finally obtained. The dissociation constant (Kd) of three potential candidates (Apt 4, Apt 7 and Apt 12) were determined by CE-LIF, and showed high affinities of 9.315 × 10?7 M, 1.040 × 10?6 M and 1.143 × 10?5 M, respectively. The result of m-Fold software analysis showed that the above three sequences could form stem-loop structure, and the Apt 4 gave the lowest free energy and the most stable structure. Using salbutamol as a control, three selected aptamers were verified with high specificity.  相似文献   

17.
E. coli O157:H7 is a pathogenic bacterium producing verotoxins that could lead to serious complications such as hemolytic uremia syndrome. Fast detection of such pathogens is important. For rapid detection, aptamers are quickly gaining traction as alternative biorecognition molecules besides conventional antibodies. Several DNA aptamers have been selected for E. coli O157:H7. Nonetheless, there has not been a comparative study of the binding characteristics of these aptamers. In this work, we present a comprehensive analysis of binding characteristics including binding affinity (Kd) and binding capacity (Bmax) of DNA-based aptamers for E. coli O157:H7 using qPCR. Our results show that aptamer E18R has the highest binding capacity to E. coli 157:H7 and the highest specificity over non-pathogenic E. coli strains K12 and DH5α. Our study also finds that the common biotin-tag modification at 5′ end typically changes the binding capacity significantly. For most of the selected aptamers, the binding capacity after a biotin-tag modification decreases. There exists a discrepancy in the binding capability between the selected aptamer and the aptamer used for detection. Our study also shows that a lower concentration of Mg2+ ions in the binding buffer leads to a decrease in the binding capacity of E17F and E18R, while it does not affect the binding capacity of S1 and EcoR1.  相似文献   

18.
利用适配体的识别能力和可扩增性, 构建了基于微磁珠分离技术的适配体实时定量聚合酶链式反应(PCR)检测方法. 通过微磁珠偶联的互补链与适配体序列之间的碱基配对结合, 有效除去溶液中未与靶分子结合的适配体序列, 采用实时定量PCR技术测定上清液中结合态的适配体序列浓度, 从而间接实现对靶分子的定量检测. 分别选取代表生物大分子和有机小分子的凝血酶和ATP作为检测对象, 验证了该方法的普适性. 研究结果表明, 在获取特异性适配体序列后, 仅需简单优化其互补链序列, 即可对超低含量的凝血酶和ATP进行准确定量, 检出限分别为50 pmol/L和5 μmol/L. 该方法具有同时适用于高特异性和高灵敏度地检测生物大分子和有机小分子的优势.  相似文献   

19.
Aptamers are DNA (or RNA) ligands selected from large libraries of random DNA sequences and capable of binding different classes of targets with high affinity and selectivity. Both the chances for the aptamer to be selected and the quality of the selected aptamer are largely dependent on the method of selection. Here we introduce selection of aptamers by nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM). The new method has a number of advantages over conventional approaches. First, NECEEM-based selection has exceptionally high efficiency, which allows aptamer development with fewer rounds of selection. Second, NECEEM can be equally used for selecting aptamers and finding their binding parameters. Finally, due to its comprehensive kinetic capabilities, the new method can potentially facilitate selection of aptamers with predefined K(d), k(off), and k(on) of the aptamer-target interaction. In this proof-of-principle work, we describe the theoretical bases of the method and demonstrate its application to a one-step selection of DNA aptamers with nanomolar affinity for protein farnesyltransferase.  相似文献   

20.
MG and SRB aptamers, which are short RNA sequences originally selected only for binding to malachite green or sulforhodamine B, can greatly enhance the fluorescence of normally nonfluorescent triphenylmethane dyes. MG aptamer enhances the quantum yields of malachite green (MG) and a novel rigidized derivative, indolinyl malachite green (IMG) by >2000-fold. SRB aptamer brightens patent blue V and VF by >90-fold. These enhancements are specific because MG aptamer has no effect on patent blue dyes and SRB aptamer has little or no effect on MG and IMG. Such sequence-specific fluorescence labeling of short RNA motifs is a first step toward genetically encodable fusion tags for imaging selected RNAs in vitro and in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号