首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 686 毫秒
1.
The aim of the study was to investigate the in vitro antioxidant properties Moringa oleifera Lam. (MO) extracts and its curative role in acetaminophen (APAP)-induced toxic liver injury in rats caused by oxidative damage. The total phenolic content and antioxidant properties of hydroethanolic extracts of different MO edible parts were investigated by employing an established in vitro biological assay. In the antihepatotoxic study, either flowers or leaves extract (200 mg/kg or 400 mg/kg, i.p) were administered an hour after APAP administration, respectively. N-Acetylcysteine was used as the positive control against APAP-induced hepatotoxicity. The levels of liver markers such as alanine aminotransferase (ALT) and the levels of oxidative damage markers including malondialdehyde (MDA), 4-hydroxynonenal (4-HNE) protein adduct, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were analysed and compared between experimental groups. Among MO edible parts the flower extracts contain the highest total phenolic content and antioxidant capacity, followed by leaves extract. The oxidative marker MDA, as well as 4-HNE protein adduct levels were elevated and GSH, SOD and CAT were significantly decreased in groups treated with hepatotoxin. The biochemical liver tissue oxidative markers measured in the rats treated with MO flowers and leaves hydroethanolic extracts showed a significant (p < 0.05) reduction in the severity of the liver damage. The results of this study strongly indicate the therapeutic properties of MO hydroethanolic extracts against acute liver injury and thereby scientifically support its traditional use.  相似文献   

2.
Overdose of acetaminophen (APAP) causes acute hepatotoxicity in rodents and man. The mechanism underlying APAP-induced liver injury remains unclear, but experimental evidence strongly suggests that activation of APAP and subsequent formation of protein adducts are involved in hepatotoxicity. Using proteomics technologies, we constructed a two-dimensional protein database for mouse liver, comprising 256 different gene products and investigated the proteins affected after APAP-induced hepatotoxicity. Adult male mice received a single dose of APAP (100 or 300 mg/kg) or its nontoxic regioisomer 3-acetamidophenol (AMAP, 300 mg/kg). The extent of liver damage was assessed 8 h after administration by increased liver enzyme release and histopathology. Changes in the protein level were studied by comparison of the intensities of the corresponding spots on two-dimensional (2-D) gels. The expression level of about 35 of the identified proteins was modified due to treatment with APAP or AMAP. The observed changes were usually in the order of 10-50% of the control value and were more marked in the high- than in the low-dose of APAP-treated animals. Most of the changes caused by AMAP occurred in a subset of the proteins modified by APAP. Many of the proteins showing changed expression levels are either known targets for covalent modification by N-acetyl-p-benzoquinoneimine (NAPQI) or involved in the regulation of mechanisms that are believed to drive APAP-induced hepatotoxicity.  相似文献   

3.
Sophora flavescens, also known as Kushen, has traditionally been used as a herbal medicine. In the present study we evaluated the ameliorative effects of kushenol C (KC) from S. flavescens against tBHP (tert-Butyl hydroperoxide)-induced oxidative stress in hepatocellular carcinoma (HEPG2) cells and acetaminophen (APAP)-induced hepatotoxicity in mice. KC pretreatment protected the HEPG2 cells against oxidative stress by reducing cell death, apoptosis and reactive oxygen species (ROS) generation. KC pretreatment also upregulated pro-caspase 3 and GSH (glutathione) as well as expression of 8-Oxoguanine DNA Glycosylase (OGG1) in the HEPG2 cells. The mechanism of action was partly related by KC’s activation of Akt (Protein kinase B (PKB)) and Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) in the HepG2 cells. In in vivo investigations, coadministration of mice with KC and APAP significantly attenuated APAP-induced hepatotoxicity and liver damage, as the serum enzymatic activity of aspartate aminotransferase and alanine aminotransferase, as well as liver lipid peroxidation and cleaved caspase 3 expression, were reduced in APAP-treated mice. Coadministration with KC also up-regulated antioxidant enzyme expression and prevented the production of proinflammatory mediators in APAP-treated mice. Taken together, these results showed that KC treatment has potential as a therapeutic agent against liver injury through the suppression of oxidative stress.  相似文献   

4.
This study was designed to investigate the hepatoprotective effect of chiisanoside (CSS) and its possible mechanisms on acetaminophen (APAP)-induced acute liver damage in mice. The serum activities of alanine transaminase (ALT), aspartate transaminase (AST), tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and the hepatic levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and malondialdehyde (MDA) were determined using the commercially available assay kits. The hepatic mRNA levels were measured by RT-PCR. The hepatic protein expressions of nuclear factor-kappa B (NF-κB), MAPK and their phosphorylated isoforms were evaluated by western blot assays. The results indicated that CSS (240 mg/kg) exhibited the hepatoprotective effects by inhibiting oxidative stress and inflammation on APAP-induced acute liver injury. Furthermore, the anti-inflammatory activity of CSS is largely related to the regulation of the NF-κB and MAPKs signaling pathways. These findings suggested that CSS possessed hepatoprotective effect against APAP-induced hepatotoxicity in mice.  相似文献   

5.
The indigenous purplish red fruit, Cleistocalyx nervosum var. paniala (CN), is grown in northern Thailand. The aqueous extract of CN pulp is known to exhibit antioxidant and anticarcinogenic properties. To search for an antioxidant fraction separated from CN, various hydroalcoholic extractions were performed. The acidified ethanolic extract of CN obtained from 0.5% (v/v) citric acid in 80% (v/v) ethanol yielded greater polyphenol content and DPPH radical scavenging activity when compared with other hydroethanolic extracts. Cyanidin-3-glucoside is a major anthocyanin present in the acidified ethanolic extract of CN (AECN). At a dose of 5000 mg/kg bw, an anthocyanin-rich extract was found to be safe when given to rats without any acute toxicity. To examine the hepatoprotective properties of AECN, an overdose of acetaminophen (APAP) was induced in a rat model, while silymarin was used as a standard reference. The administration of AECN at a dose of 300 mg/kg bw for 28 days improved hepatocyte architecture and modulated serum alanine aminotransferase levels in APAP-induced rats. Furthermore, it significantly decreased serum and hepatic malondialdehyde levels but increased hepatic glutathione content, as well as glutathione peroxidase and UDP-glucuronosyltransferase activities. In conclusion, AECN may effectively reduce oxidative stress induced acute hepatotoxicity in overdose APAP-treated rats through the suppression of oxidative stress and the enhancement of the antioxidant system in rat livers.  相似文献   

6.
《中国化学快报》2023,34(2):107507
Acetaminophen (APAP), a classic nonsteroidal anti-inflammatory drug (NSAID), has attracted much attention due to the overdose-induced hepatotoxicity in the past several decades. N-Acetyl-p-benzoquinone imine (NAPQI), the P450-dependent metabolism of APAP, leads to GSH depletion, protein binding, mitochondrial oxidative stress, and eventually the liver injury. Herein, we develop a Fe-based metal-organic framework (MOF) to deliver and transform acetaminophen into toxic “chemo” drug through the cascade reaction for enhanced cancer therapy. In the acidic tumor microenvironment, the Fe-based MOF collapses and releases abundant Fe ions to generate hydroxyl radicals (?OH) via Fenton reaction, subsequently catalyzing nontoxic APAP into toxic NAPQI. Meanwhile, NAPQI depletes intracellular glutathione (GSH) rapidly, leading to alleviating the antioxidant ability of cancer cells and amplifying Fenton activity. The intracellular oxidative stress and the toxic metabolite of APAP can provide a synergistic effect on antitumor activity.  相似文献   

7.
Cui B  Liu S  Lin X  Wang J  Li S  Wang Q  Li S 《Molecules (Basel, Switzerland)》2011,16(11):9116-9128
This study evaluated the protective effects of aqueous extract of Lycium barbarum (LBAE) and ethanol extract of Lycium barbarum (LBEE) on blood lipid levels, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities and liver tissue antioxidant enzyme activities in rats fed a high fat diet (HF). The rats were randomly divided into seven groups of ten rats each and fed a different diet for eight weeks as follows: One group (NC group) was fed a standard diet, one group was fed a high-fat diet (HF group), one group was fed a high-fat diet and orally fed with 20 mg/kg b.w. simvastatin (HF + simvastatin group), and the other group was fed the high fat diet and orally fed with 50 mg/kg b.w. or 100 mg/kg b.w. LBAE (HF + LBAE), or 50 mg/kg b.w. or 100 mg/kg b.w. LBEE (HF + LBEE), respectively. After eight weeks, the HF diet caused deleterious metabolic effects. Rats fed the HF diet alone showed increased hepatocellular enzyme activities in plasma, a significant decline in antioxidant enzyme activities, and elevated liver lipid peroxidation indices. LBAE and LBEE administration significantly reduced liver damage and oxidative changes, and brought back the antioxidants and lipids towards normal levels. These data suggest that these antioxidants protect against toxicity parameters in HF rats.  相似文献   

8.
《中国化学快报》2023,34(3):107586
Cell stress responses are associated with numerous diseases including diabetes, neurodegenerative diseases, and cancer. Several events occur under cell stress, in which, are protein expression and organelle-specific pH fluctuation. To understand the lysosomal pH variation under cell stress, a novel NIR ratiometric pH-responsive fluorescent probe (BLT) with lysosomes localization capability was developed. The quinoline ring of BLT combined with hydrogen ion which triggered the rearrangement of π electrons conjugated at low pH medium, meanwhile, the absorption and fluorescent spectra of BLT showed a red-shifts, which gived a ratiometric signal. Moreover, the probe BLT with a suitable pKa value has the potential to discern changes in lysosomal pH, either induced by heat stress or oxidative stress or acetaminophen-induced (APAP) injury stress. Importantly, this ratiometric fluorescent probe innovatively tracks pH changes in lysosome in APAP-induced liver injury in live cells, mice, and zebrafish. The probe BLT as a novel fluorescent probe possesses important value for exploring lysosomal-associated physiological varieties of drug-induced hepatotoxicity.  相似文献   

9.
Salacia oblonga, a woody climbing plant belonging to the family Celastaceae, is widely distributed in India and other southeast Asian countries. The genus Salacia have been used particularly for the treatment of diabetes, obesity, gonorrhoea, rheumatism, pruritus and asthma. Acetaminophen (APAP), used as an analgesic drug, produces liver and kidney necrosis in mammals at high doses. The aim of this study was to investigate the nephroprotective and antioxidant activities of the ethanol extract of Salacia oblonga (EESO) at the two dose levels of 250 and 500 mg/kg?bw on APAP-induced toxicity in rats. The results showed that APAP significantly increases the levels of serum urea, creatinine, and reduces levels of uric acid concentration. The EESO reduces these by increasing anti-oxidative responses as assessed by biochemical and histopathological parameters. In conclusion, our results suggest that the EESO possesses nephroprotective and antioxidant effects against APAP-induced nephrotoxicity in rats.  相似文献   

10.
Acetaminophen (N-acetyl-p-aminophenol, APAP) overdosage can produce fatal centrilobular hepatic necrosis in humans. The present study attempted to investigate the protective effect of an anthocyanin-rich extract from bilberries and blackcurrants (AE) against APAP-induced acute hepatic damage in rats. Treatment with AE normalised blood activities of glutamate oxaloacetate and glutamate pyruvate transaminase and prevented APAP-induced plasmatic and tissutal alterations in biomarkers of oxidative stress, probably due to various bioproperties of the components of the extract.  相似文献   

11.
《Arabian Journal of Chemistry》2020,13(11):8133-8145
Humans and animals are frequently exposed to heavy metals in the environment, which are highly toxic to the physiological milieu and organs of the body. We investigated the ameliorative potentials of ethanol leaf extract of Ruspolia hypocrateriformis against redox imbalance due to exposure of rats to heavy metals. The in vitro study explored the antioxidant potentials of the ethanol leaf extract using 1,1-diphenyl-2-picryl hydrazyl, nitric oxide and ferric reducing antioxidant potential assays respectively. HPLC was used to quantify the amount of flavonoids and phenolic acids in the extract. For in vivo study, 30 rats were randomly divided into 5 groups. Group A received normal saline. Group B received combined solution of Lead Nitrate and Mercury Chloride (11.25 mg/kg and 0.4 mg/kg) per Bwt/day. Group C, D and E were administered with the leaf extract at doses of 200, 400 and 600 mg/kg body weight respectively for 28 consecutive days. Biomarkers of hepatic dysfunctions and oxidative stress were investigated in the study rats. The HPLC study revealed high amount of gallic and ferulic acids (17.86 ± 2.68), which are the major phenolic compounds found in the extract. The extract further exhibited high antioxidant potentials in inhibiting the scavenging activity of free radicals produced in vitro. Interestingly, 600 mg/kg dosage of the leaf extract successfully ameliorated the distorted redox imbalance and oxidative damage in the liver of the rats caused by exposure to the heavy metals. Leaf extract of Ruspolia hypocrateriformis demonstrated strong antioxidant potentials, which could be exploited in pharmaceutical preparations.  相似文献   

12.
Li R  Guo W  Fu Z  Ding G  Zou Y  Wang Z 《Molecules (Basel, Switzerland)》2011,16(10):8684-8694
In the present study the capacity of Radix Paeoniae Rubra aqueous extract (RPRAE) as an antioxidant to protect against carbon tetrachloride (CCl(4))-induced oxidative stress and hepatotoxicity in Wistar rats was investigated. Six groups of rats were used. Radix Paeoniae Rubra aqueous extract (100 or 200 or 300 mg/kg of bw) or bifendate (100 mg/kg of bw) were given daily by gavage to the animals on 28 consecutive days to elucidate the protective effects against CCl(4)-induced hepatotoxicity. The 20% CCl(4)/olive oil was gavage of gastric tube twice a week (on the third and seventh days of each week). The animals of normal control group were given only vehicle. The animals of CCl(4)-treated group were administered with CCl(4) twice a week (on the third and seventh days of each week) and with vehicle on rest of the days. The test materials were found effective as hepatoprotective agents, as evidenced by plasma and liver biochemical parameters. Therefore, the results of this study show that Radix Paeoniae Rubra aqueous extract can protect the liver against CCl(4)-induced oxidative damage in rats, and the hepatoprotective effects might be correlated with its antioxidant and free radical scavenger effects.  相似文献   

13.
The aim of this study was to investigate the effects of Lycium barbarum polysaccharide (LBP) on alcohol-induced liver damage in rats. A total of 36 rats were divided into control, ethanol and ethanol + LBP groups. Rats in the ethanol group were fed 7 g ethanol/kg body weight by gastric infusion, three times a day, for 30 consecutive days, while rats in the control group received the same volume of physiological saline instead of ethanol, and rats in ethanol + LBP group were fed both ethanol (7 g/kg body weight) and LBP (300 mg/kg body weight/day). Alcoholic liver injury was examined by serum ALT and AST activities, alcoholic fatty liver was assessed by lipid levels, and oxidative stress was evaluated by SOD, CAT, GSH-Px, GSH and MDA assays. In the ethanol group, a significant elevation of enzymes and lipid in serum, increased MDA level and depletion of SOD, CAT, GSH-Px and GSH in liver were observed. LBP administration significantly ameliorated liver injury, prevented the progression of alcohol-induced fatty liver, and improved the antioxidant functions when compared with the ethanol group. Histopathological examination of rat liver revealed that LBP administration protected liver cells from the damage induced by ethanol. The results suggest that LBP is a promising agent to protect the liver from hepatotoxicity and fatty liver induced by ethanol intake.  相似文献   

14.
Intestinal ischemia-reperfusion (I/R) is an important event in the pathogenesis of multiple organ dysfunction syndrome (MODS). The aim of this study is to determine the effects of ginsenoside Rb1 on liver injury induced by intestinal I/R in rats. Adult male Wistar rats were randomly divided into four groups: (1) a control, sham-operated group (sham group); (2) an intestinal I/R group subjected to 1 h intestinal ischemia and 2 h reperfusion (I/R group); (3) a group treated with 20 mg/kg ginsenoside Rb1 before reperfusion (Rb1-20 group); and (4) a group treated with 40 mg/kg ginsenoside Rb1 before reperfusion (Rb1-40 group). Liver and intestinal histology was observed. Aspartate aminotransferase (AST), alanine aminotransferase (ALT) level in serum and malondialdehyde (MDA) level in intestinal tissues were measured. Myeloperoxidase (MPO), TNF-α, MDA level and immunohistochemical expression of NF-κB and intracellular adhesion molecale-1 (ICAM-1) in liver tissues was assayed. In addition, a western blot analysis of liver NF-κB expression was performed. Results indicated intestinal I/R induced intestinal and liver injury, which was characterized by increase of AST and ALT in serum, MDA level in intestine, MPO, TNF-α and MDA level and ICAM-1 and NF-κB expression in the liver tissues. Ginsenoside Rb1 (20, 40 mg/kg) ameliorated liver injury, decreased MPO, TNF-α and MDA level, NF-κB and ICAM-1 expression in liver tissues. In conclusion, ginsenoside Rb1 ablated liver injury induced by intestinal I/R by inhibiting NF-κB activation.  相似文献   

15.
Nutmeg is a traditional spice and medicinal plant with a variety of pharmacological activities. However, nutmeg abuse due to its hallucinogenic characteristics and poisoning cases are frequently reported. Our previous metabolomics study proved the hepatotoxicity of nutmeg and demonstrated that high-dose nutmeg can affect the synthesis and secretion of bile acids and cause oxidative stress. In order to further investigate the hepatotoxicity of nutmeg, normal saline, 1 g/kg, 4 g/kg nutmeg were administrated to male Kunming mice by intragastrical gavage for 7 days. Histopathological investigation of liver tissue, proteomics and biochemical analysis were employed to explore the mechanism of liver damage caused by nutmeg. The results showed that a high-dose (4 g/kg) of nutmeg can cause significant increased level of CYP450s and depletion of antioxidants, resulting in obvious oxidative stress damage and lipid metabolism disorders; but this change was not observed in low-dose group (1 g/kg). In addition, the increased level of malondialdehyde and decreased level of glutathione peroxidase were found after nutmeg exposure. Therefore, the present study reasonably speculates that nutmeg exposure may lead to liver injury through oxidative stress and the degree of this damage is related to the exposure dose.  相似文献   

16.
Excessive oxidative stress plays a role in hepatotoxicity and the pathogenesis of hepatic diseases. In our previous study, the phenolic extract of beluga lentil (BLE) showed the most potent in vitro antioxidant activity among extracts of four common varieties of lentils; thus, we hypothesized that BLE might protect liver cells against oxidative stress-induced cytotoxicity. BLE was evaluated for its protective effects against oxidative stress-induced hepatotoxicity in AML12 mouse hepatocytes and BALB/c mice. H2O2 treatment caused a marked decrease in cell viability; however, pretreatment with BLE (25–100 μg/mL) for 24 h significantly preserved the viability of H2O2-treated cells up to about 50% at 100 μg/mL. As expected, BLE dramatically reduced intracellular reactive oxygen species (ROS) levels in a dose-dependent manner in H2O2-treated cells. Further mechanistic studies demonstrated that BLE reduced cellular ROS levels, partly by increasing expression of antioxidant genes. Furthermore, pretreatment with BLE (400 mg/kg) for 2 weeks significantly reduced serum levels of alanine transaminase and triglyceride by about 49% and 40%, respectively, and increased the expression and activity of glutathione peroxidase in CCl4-treated BALB/c mice. These results suggest that BLE protects liver cells against oxidative stress, partly by inducing cellular antioxidant system; thus, it represents a potential source of nutraceuticals with hepatoprotective effects.  相似文献   

17.
Liver cancer, specifically hepatocellular carcinoma has been a widespread problem among general population. This study aims to investigate the modulating mechanism of gambogenic acid, a phenolic xanthonoid, in diethylnitrosamine (DEN)-induced liver cancer in rats. Male Wistar albino rats were clustered into four groups (n = 6). Group I served as control treated with normal saline. Hepatocellular carcinogenesis was induced in rats by single intraperitoneal (i.p.) administration of DEN in saline (200 mg/kg b.w.) for groups II and III. Group III received oral administration of gambogenic acid (20 mg/kg b.w.) one hour post DEN administration, whereas group IV received oral administration of gambogenic acid (20 mg/kg b.w.) alone. Rats were sacrificed after 16 weeks to determine the levels of hepatic biomarkers, oxidative stress markers, hematological profile and histopathological changes. Gambogenic acid significantly ameliorated the expressions of oxidative stress markers TBARS, GSH (P < 0.05), enzymatic antioxidants GPx, CAT, SOD, GST (P < 0.05), apoptosis mediators (P < 0.05), and serum biomarkers for liver damage and tumor formation (P < 0.05) compared with DEN-induced model group. Hepatocellular levels of 8-OHdG were significantly diminished (P < 0.05) by gambogenic acid against the damage incurred by DEN. Liver histopathological derangements caused by DEN were reversed by gambogenic acid. The results clearly impacted the effect of gambogenic acid in attenuating DEN-induced hepatocellular carcinoma in rats mediated through NF-kβ pathway and hepatocellular oxidative damage.  相似文献   

18.
Isofuranodiene is a natural sesquiterpene rich occurring in Smyrnium olusatrum, a forgotten culinary herb which was marginalised after the domestication of the improved form of celery. Our recent data showed that isofuranodiene inhibited the proliferation and induced apoptosis in cancer cells. In this study, we investigated its protective effect on d-galactosamine/lipopolysacchride (GalN/LPS)-induced liver injury in SD rats. Oral administration of isofuranodiene (20 and 50 mg/kg) dramatically inhibited GalN/LPS-induced serum elevation of aspartate aminotransferase, alanine aminotransferase and malondialdehyde levels, and significantly ameliorated liver injury as evidenced by the histological improvement in H&E staining. Furthermore, isofuranodiene treatment significantly inhibited GalN/LPS-induced mRNA expression of IL-1β, IL-6 and inducible nitric oxide synthase in liver tissues. The results from this study showed that isofuranodiene protects GalN/LPS-induced liver injury in SD rats and suggested that it may be a potential functional food ingredient for the prevention and treatment of liver diseases.  相似文献   

19.
Oral administration of xenobiotics is preferable for research in in vivo models because it mimics the real life situation of human subjects. Therefore, oral (po) monocrotaline (MCT) (a common contaminant of dietary supplements)/intraperitoneal (ip) lipopolysaccharides (LPS)-induced liver injury possibly imitates idiosyncratic hepatotoxicity in humans. Cytokines, for example interleukin-1beta (IL-1beta) and transforming growth factor beta (TGF-beta) are known to play a role in the development of toxicity and repair processes, respectively. The purpose of this study was to develop and characterize a model of po MCT/ip LPS hepatotoxicity which may elucidate the mechanisms of injury. ND4 male mice were given MCT (200 mg/kg) followed 4 h later by LPS (6 mg/kg). Blood samples were drawn for plasma chemistry and IL-1beta. Animals were euthanized and livers were harvested at different time points. We have shown that MCT/LPS cotreatment results in significant elevation of plasma alanine aminotransferase (ALT), CRP, IL-1beta and TGF-1beta. Histopathological evaluation revealed diffuse degenerative injury. In summary, we have established a reproducible in vivo model of hepatotoxicity by po MCT/ip LPS cotreatment that may closely mimic real life idiosyncratic hepatotoxicity.  相似文献   

20.
Pyrazinamide(PZA), isoniazid(INH) and rifampicin(RFP) are all commonly used anti-tuberculosis drugs in clinical practice, and long-term medication may cause severe liver damage and toxicity. The level of peroxynitrite(ONOO–) generated in liver has long been regarded as a biomarker for the prediction and measurement of drug-induced liver injury(DILI). In this article, we constructed a BODIPY-based fluorescent probe(BDP-Py+) that enabled quickly and sensitively detect and image ONOO–in vivo. Utili...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号