首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main objective of this paper is to develop a generalized finite element formulation of stress integration method for non-quadratic yield functions and potentials with mixed nonlinear hardening under non-associated flow rule. Different approaches to analyze the anisotropic behavior of sheet materials were compared in this paper. The first model was based on a non-associated formulation with both quadratic yield and potential functions in the form of Hill’s (1948). The anisotropy coefficients in the yield and potential functions were determined from the yield stresses and r-values in different orientations, respectively. The second model was an associated non-quadratic model (Yld2000-2d) proposed by Barlat et al. (2003). The anisotropy in this model was introduced by using two linear transformations on the stress tensor. The third model was a non-quadratic non-associated model in which the yield function was defined based on Yld91 proposed by Barlat et al. (1991) and the potential function was defined based on Yld89 proposed by Barlat and Lian (1989). Anisotropy coefficients of Yld91 and Yld89 functions were determined by yield stresses and r-values, respectively. The formulations for the three models were derived for the mixed isotropic-nonlinear kinematic hardening framework that is more suitable for cyclic loadings (though it can easily be derived for pure isotropic hardening). After developing a general non-associated mixed hardening numerical stress integration algorithm based on backward-Euler method, all models were implemented in the commercial finite element code ABAQUS as user-defined material subroutines. Different sheet metal forming simulations were performed with these anisotropic models: cup drawing processes and springback of channel draw processes with different drawbead penetrations. The earing profiles and the springback results obtained from simulations with the three different models were compared with experimental results, while the computational costs were compared. Also, in-plane cyclic tension–compression tests for the extraction of the mixed hardening parameters used in the springback simulations were performed for two sheet materials.  相似文献   

2.
Sheet metal forming processes often involve complex loading sequences. To improve the prediction of some undesirable phenomena, such as springback, physical behavior models should be considered. This paper investigates springback behavior predicted by advanced elastoplastic hardening models which combine isotropic and kinematic hardening and take strain-path changes into account. A dislocation-based microstructural hardening model formulated from physical observations and the more classical cyclic model of Chaboche have been considered in this work. Numerical implementation was carried out in the ABAQUS software using a return mapping algorithm with a combined backward Euler and semi-analytical integration scheme of the constitutive equations. The capability of each model to reproduce transient hardening phenomena at abrupt strain-path changes has been shown via simulations of sequential rheological tests. A springback analysis of strip drawing tests was performed in order to emphasize the impact of several influential parameters, namely: process, numerical and behavior parameters. The effect of the two hardening models with respect to the process parameters has been specifically highlighted.  相似文献   

3.
In this paper an anisotropic material model based on non-associated flow rule and mixed isotropic–kinematic hardening was developed and implemented into a user-defined material (UMAT) subroutine for the commercial finite element code ABAQUS. Both yield function and plastic potential were defined in the form of Hill’s [Hill, R., 1948. A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond. A 193, 281–297] quadratic anisotropic function, where the coefficients for the yield function were determined from the yield stresses in different material orientations, and those of the plastic potential were determined from the r-values in different directions. Isotropic hardening follows a nonlinear behavior, generally in the power law form for most grades of steel and the exponential law form for aluminum alloys. Also, a kinematic hardening law was implemented to account for cyclic loading effects. The evolution of the backstress tensor was modeled based on the nonlinear kinematic hardening theory (Armstrong–Frederick formulation). Computational plasticity equations were then formulated by using a return-mapping algorithm to integrate the stress over each time increment. Either explicit or implicit time integration schemes can be used for this model. Finally, the implemented material model was utilized to simulate two sheet metal forming processes: the cup drawing of AA2090-T3, and the springback of the channel drawing of two sheet materials (DP600 and AA6022-T43). Experimental cyclic shear tests were carried out in order to determine the cyclic stress–strain behavior and the Bauschinger ratio. The in-plane anisotropy (r-value and yield stress directionalities) of these sheet materials was also compared with the results of numerical simulations using the non-associated model. These results showed that this non-associated, mixed hardening model significantly improves the prediction of earing in the cup drawing process and the prediction of springback in the sidewall of drawn channel sections, even when a simple quadratic constitutive model is used.  相似文献   

4.
It is essential to model the Bauschinger effect correctly for sheet metal forming process simulation and subsequent springback prediction when material points are subjected to cyclic loading conditions. The combined nonlinear hardening model for time independent cyclic plasticity, proposed by Chaboche and co-workers, is examined and a simple modification is suggested for the isotropic part of the hardening rule to utilize the conventional tensile test data directly. This modification is useful for the materials whose reverse loading curves saturate to the monotonic loading curve. In addition, an anisotropic nonlinear kinematic hardening model (ANK model) is proposed in an attempt to represent the Bauschinger effect more realistically. Possible offset in flow stress is modeled by treating the back stress evolution during reverse loading differently from the initial loading. This strategy coupled with the modified isotropic hardening rule seems to provide a way to model the Bauschinger effect consistently over multiple cycles. Two types of auto-body alloys are examined in this paper. Associated material parameters are determined by employing available tension-compression test data and multi-cycle bend test data. A developed finite element formulation is applied to analyze simple validation type of problems. The cyclic stress–strain curves generated from the proposed ANK model match remarkably well with measured data.  相似文献   

5.
The constitutive model for the unusual asymmetric hardening behavior of magnesium alloy sheet presented in a companion paper (Lee, M.G., Wagoner, R.H., Lee, J.K., Chung, K., Kim, H.Y., 2008. Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheet, Int. J. Plasticity 24(4), 545–582) was applied to the springback prediction in sheet metal forming. The implicit finite element program ABAQUS was utilized to implement the developed constitutive equations via user material subroutine. For the verification purpose, the springback of AZ31B magnesium alloy sheet was measured using the unconstrained cylindrical bending test of Numisheet (Numisheet ’2002 Benchmark Problem, 2002. In: Yang, D.Y., Oh, S.I., Huh, H., Kim, Y.H. (Eds.), Proceedings of 5th International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes, Jeju, Korea) and 2D draw bend test. With the specially designed draw bend test the direct restraining force and long drawn distance were attainable, thus the measurement of the springback could be made with improved accuracy comparable with conventional U channel draw bend test. Besides the developed constitutive models, other models based on isotropic constitutive equations and the Chaboche type kinematic hardening model were also considered. Comparisons were made between simulated results by the finite element analysis and corresponding experiments and the newly proposed model showed enhanced prediction capability, which was also supported by the simple bending analysis adopting asymmetric stress–strain response.  相似文献   

6.
In sheet metal forming processes local material points can experience multi-axial and multi-path loadings. Under such loading conditions, conventional phenomenological material formulations are not capable to predict the deformation behavior within satisfying accuracy. While micro-mechanical models have significantly improved the understanding of the deformation processes under such conditions, these models require large sets of material data to describe the micromechanical evolution and quite enormous computation expenses for industrial applications. To reduce the drawbacks of phenomenological material models under the multi-path loadings a new anisotropic elasto-plastic material formulation is suggested. The model enables the anisotropic yield surface to grow (isotropic hardening), translate (kinematic hardening) and rotate (rotation of the anisotropy axes) with respect to the deformation, while the shape of the yield surface remains essentially unchanged.Essentially, the model is formulated on the basis of an Armstrong–Frederick type kinematic hardening, the plastic spin theory for the reorientation of the symmetry axes of the anisotropic yield function, and additional terms coupling these expressions. The capability of the model is illustrated with multi-path loading simulations in ‘tension-shear’ and ‘reverse-shear’ to assess its performance with ‘cross’ hardening and ‘Bauschinger’ effects.  相似文献   

7.
In order to improve the prediction capability of spring-back in the computational analysis of automotive sheet forming processes, the modified Chaboche type combined isotropic-kinematic hardening law was formulated to account for the Bauschinger and transient behavior in Part I. As for the yield stress function, the non-quadratic anisotropic yield potential, Yld2000-2d, was utilized under the plane stress condition. Experimental procedures to obtain the material parameters of the combined hardening law and the yield potential are presented here in Part II for three automotive sheets: AA5754-O, AA6111-T4 and DP-Steel. The modified Chaboche model was confirmed to well represent the measured hardening behavior including the Bauschinger and transient behavior. While the theoretical and numerical formulations of the constitutive law are discussed in Part I, experimental verifications for spring-back of formed parts are further discussed in Part III.  相似文献   

8.
In order to predict the deformations under multi-axial and multi-path loadings in a phenomenological framework, a new rotational-isotropic-kinematic (RIK) hardening model has been suggested in the theory part of the paper combining isotropic, kinematic and rotational hardening. Essential features of this material model are Armstrong–Frederick type backstress components for kinematic hardening and a plastic spin for the rotational hardening describing the evolution of the symmetry axes of the anisotropic yield function.The purpose of this article is to illustrate the significance of the RIK hardening model in sheet metal forming applications as well as in springback predictions. With the rotational hardening and a correction term related to the kinematic hardening, the flow stress in each orientation can be described with few material parameters. Several benchmark problems are considered to illustrate and assess the performance of the RIK hardening model in comparison with other hardening models and experimental results.  相似文献   

9.
In order to improve the prediction capability of spring-back in the computational analysis of automotive sheet forming processes, the modified Chaboche type combined isotropic–kinematic hardening law was formulated to account for the Bauschinger and transient behavior in Part I. As for the yield stress function, the non-quadratic anisotropic yield potential, Yld2000-2d, was utilized under the plane stress condition. Experimental procedures to obtain the material parameters of the combined hardening law and the yield potential were presented in Part II for three automotive sheets. For verification purposes, comparisons of simulations and experiments were performed here for the unconstrained cylindrical bending, the 2-D draw bending and the modified industrial part (the double-S rail). For all three applications, simulations showed good agreements with experiments. Simplified one-dimensional plane strain analytical and numerical methods were also developed here to better understand the spring-back in forming processes.  相似文献   

10.
Experiments have shown that magnesium alloy sheet a common hexagonal close-packed metal, exhibits mechanical behavior unlike that of sheets made of cubic metals (X.Y. Lou et al., 2007, Int. J. Plasticity, 24, 44). The unique stress–strain response includes a strong asymmetry in the initial yield and subsequent plastic hardening. In other words, the stress–strain curves in tension and compression are significantly different. A proper representation of the constitutive relationships is crucial for the accurate evaluation of springback, which occurs due to the residual moment distribution through the sheet thickness after bending. In this paper, we propose an analytical model for asymmetric elasto-plastic bending under tension followed by elastic unloading in order to evaluate the bending moment, which is equivalent to the springback amount. To simplify the calculations, the experimentally measured stress–strain curve of the magnesium alloy sheet was approximated with discrete linear hardening in each deformation region, and the material properties were characterized according to several simplifying assumptions. The bending moment was calculated analytically using the approximate asymmetric stress–strain relationship up to the prescribed curvature corresponding to the radius of the tool in sheet metal forming operations. A numerical example showed an unusual springback increase, even with an increase in the applied force; this is an unexpected result for conventional symmetric materials. We also compared the calculated springback amounts with the results of physical measurements. This showed that the proposed model predicts the main trends of the springback in magnesium alloy sheets reasonably well considering the simplicity of the analytical approach.  相似文献   

11.
Hill's 1948 anisotropic theory of plasticity (Hill, R., 1948. A theory of yielding and plastic flow of anisotropic metals. Proc. Roy. Soc. London A193, 281–297) is extended to include the concept of combined isotropic-kinematic hardening, and the objective of this paper is to validate the model so that it may be useful for analyses of sheet metal forming. Isotropic hardening and kinematic hardening may be experimentally observed in sheet metals, if yielding is defined by the proportional limit or by a small proof strain. In this paper, a single exponential term is used to describe isotropic hardening and Prager's linear kinematic hardening rule is applied for simplicity. It is shown that this model can satisfactorily describe both the yield stress and the plastic strain ratio, the R-ratio, observed in tension test of specimens cut at various angles measured from the rolling direction of the sheet. Kinematic hardening leads to a gradual change in the direction of the plastic strain increment, as the axial strain increases in the tension test; while in the traditional approach for sheet metal, this direction does not change due to the use of isotropic hardening.  相似文献   

12.
This work deals with a reliability assessment of springback problem during the sheet metal forming process. The effects of operative parameters and material properties, blank holder force and plastic prestrain, on springback are investigated. A generic reliability approach was developed to control springback. Subsequently, the Monte Carlo simulation technique in conjunction with the Latin hypercube sampling method was adopted to study the probabilistic springback. Finite element method based on implicit/explicit algorithms was used to model the springback problem. The proposed constitutive law for sheet metal takes into account the adaptation of plastic parameters of the hardening law for each prestrain level considered. Rackwitz-Fiessler algorithm is used to find reliability properties from response surfaces of chosen springback geometrical parameters. The obtained results were analyzed using a multi-state limit reliability functions based on geometry compensations.  相似文献   

13.
In order to improve the prediction capability of spring-back in automotive sheet forming processes, the modified Chaboche type combined isotropic-kinematic hardening law was formulated based on the modified equivalent plastic work principle to account for the Bauschinger effect and transient behavior. As for the yield stress function, the non-quadratic anisotropic yield potential, Yld2000-2d, was utilized under the plane stress condition. Besides the theoretical aspect of the constitutive law including the general plastic work principle for monotonously proportional loading, the method to determine hardening parameters as well as numerical formulations to update stresses were developed based on the incremental deformation theory and the consistency requirement as summarized in Part I, while the characterization of material properties and verifications with experiments are discussed in Part II and III, respectively.  相似文献   

14.
The present paper aims at analysing the sheet metal formability through several isotropic and kinematic hardening models. Specifically, a special attention is paid to the physically-based hardening model of Teodosiu and Hu (1995), which accounts for the anisotropic work-hardening induced by the microstructural evolution at large strains, as well as to some more conventional hardening models, including the isotropic Swift strain-hardening power law, and the Voce saturation strain-hardening law, combined with a non-linear kinematic hardening described by the Armstrong–Frederick law. The onset of localized necking is simulated by an advanced sheet metal forming limit model which connects, through the Marciniak–Kuczinsky analysis, the hardening models with the anisotropic yield criterion Yld2000-2d (Barlat et al., 2003). Both linear and complex strain paths are taken into account. The selected material is a DC06 steel sheet. The validity of each model is assessed by comparing the predicted forming limits with experimental results carefully obtained on this steel. The origin of discrepancy in the predicted results using different hardening models is thoroughly analyzed.  相似文献   

15.
In the ductile regime of inelastic flow, alkali halides behave similarly to various metals. Their behavior is fully plastic, shows strong rate and history dependencies, and exhibits anisotropic hardening. In this paper, the authors present the most recent version of SUVIC, a viscoplastic model with internal state variables (ISV). After recalling the main features of alkali halides inelastic response, the modified equations of the model are presented. They are then used to represent the behavior of polycrystalline sodium chloride submitted to conventional triaxial compression (CTC) and reduced triaxial extension (RTE) tests, using results that highlight mixed (kinematic and isotropic) hardening of the material, hence showing a type of Bauschinger effect. A discussion follows.  相似文献   

16.
Bend–stretch forming is commonly used to shape extruded tubular aluminum parts for automotive and other applications. The tubes are pre-stretched, pressurized and bent over rigid curved dies. Tension prevents buckling of the compressed side and helps reduce springback. An unwanted byproduct of the process is distortion of the cross section. Small amounts of pressure applied during forming can reduce this distortion. The problem was studied through a combination of experiment and analysis. In numerical models of the process the inelastic behavior of the aluminum alloy was modeled through isotropically hardening plasticity. With the limitations imposed by this model, use of a J2-type yield surface resulted in uniform underprediction of cross sectional deformation. The predictions matched the measurements when a non-quadratic yield function appropriately “calibrated,” was used instead. The change in yield function shape alters the instantaneous normals to the yield surface which, in turn, affect the calculated strain increments. This paper demonstrates how suitably calibrated nonlinear kinematic hardening models can have the same corrective effect. The calibration involves selection of a suitable kinematic hardening rule. Changes in the hardening direction alter the instantaneous normals and therefore alter the plastic strain increments resulting in approximately the same net effect as the switch from the von Mises to the non-quadratic yield function.  相似文献   

17.
18.
The hardening model proposed by Z. Mróz based on the uniaxial fatigue behavior of many metals is adopted to derive an incremental constitutive equation for general three-dimensional problems. This constitutive law is then employed in the analysis of metal forming problems to assess the influence of loading cycles, of the types involved in standard forming processes, on the ultimate formability of sheet metals. The predicted forming limit curves differ quantitatively from results obtained via an isotropie hardening model and differ qualitatively from those obtained via a kinematic model. Also investigated are the effects of such loading cycles on material response to simple tensile loading, which is often used to characterize a material. Significant differences between the present model and the other two models considered are observed in such characterizers of simple tensile behavior as the stress-strain curve, the anisotropy parameter and the uniform elongation. These differences suggest a rather simple experiment to identify the proper material model to be used in analyses of problems which involve loading cycles. Comparisons with some experimental results reveal that the employment of an anisotropic hardening model, such as the generalized Mróz model derived herein, is indeed crucial in accurately predicting material response to complicated loading histories.  相似文献   

19.
Based on pair functional potentials, Cauchy-Born rule and slip mechanism, a material model assembling with spring-bundle components, a cubage component and slip components is established to describe the elasto-plastic damage constitutive relation under finite deformation. The expansion/shrink, translation and distortion of yield surfaces can be calculated based on the hardening rule and Bauschinger effect defined on the slip component level. Both kinematic and isotropic hardening are included. Numerical simulations and predictions under tension, torsion, and combined tension-torsion proportional/non-proportional loading are performed to obtain the evolution of subsequent yield surfaces and elastic constants and compare with two sets of experimental data in literature, one for a very low work hardening aluminum alloy Al 6061-T6511, and another for a very high work hardening aluminum alloy annealed 1100 Al. The feature of the yield surface in shape change, which presents a sharp front accompanied by a blunt rear under proportional loading, is described by the latent hardening and Bauschinger effect of slip components. Further, the evolution law of subsequent yield surfaces under different proportional loading paths is investigated in terms of their equivalence. The numerical simulations under non-proportional loading conditions for annealed 1100 Al are performed, and the subsequent yield surfaces exhibit mixed cross effect because the kinematic hardening and isotropic hardening follow different evolution tendency when loading path changes. The results of non-proportional loading demonstrate that the present model has the ability to address the issue of complex loading due to the introduction of state variables on slip components. Moreover, as an elasto-plastic damage constitutive model, the present model can also reflect the variation of elastic constants through damage defined on the spring-bundle components.  相似文献   

20.
In this work, we develop a physically-based crystal plasticity model for the prediction of cyclic tension–compression deformation of multi-phase materials, specifically dual-phase (DP) steels. The model is elasto–plastic in nature and integrates a hardening law based on statistically stored dislocation density, localized hardening due to geometrically necessary dislocations (GNDs), slip-system-level kinematic backstresses, and annihilation of dislocations. The model further features a two level homogenization scheme where the first level is the overall response of a two-phase polycrystalline aggregate and the second level is the homogenized response of the martensite polycrystalline regions. The model is applied to simulate a cyclic tension–compression–tension deformation behavior of DP590 steel sheets. From experiments, we observe that the material exhibits a typical decreasing hardening rate during forward loading, followed by a linear and then a non-linear unloading upon the load reversal, the Bauschinger effect, and changes in hardening rate during strain reversals. To predict these effects, we identify the model parameters using a portion of the measured data and validate and verify them using the remaining data. The developed model is capable of predicting all the particular features of the cyclic deformation of DP590 steel, with great accuracy. From the predictions, we infer and discuss the effects of GNDs, the backstresses, dislocation annihilation, and the two-level homogenization scheme on capturing the cyclic deformation behavior of the material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号