首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Complexes [Ir(Cp*)Cl(n)(NH2Me)(3-n)]X(m) (n = 2, m = 0 (1), n = 1, m = 1, X = Cl (2a), n = 0, m = 2, X = OTf (3)) are obtained by reacting [Ir(Cp*)Cl(mu-Cl)]2 with MeNH2 (1:2 or 1:8) or with [Ag(NH2Me)2]OTf (1:4), respectively. Complex 2b (n = 1, m = 1, X = ClO 4) is obtained from 2a and NaClO4 x H2O. The reaction of 3 with MeC(O)Ph at 80 degrees C gives [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(NH2Me)]OTf (4), which in turn reacts with RNC to give [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(CNR)]OTf (R = (t)Bu (5), Xy (6)). [Ir(mu-Cl)(COD)]2 reacts with [Ag{N(R)=CMe2}2]X (1:2) to give [Ir{N(R)=CMe2}2(COD)]X (R = H, X = ClO4 (7); R = Me, X = OTf (8)). Complexes [Ir(CO)2(NH=CMe2)2]ClO4 (9) and [IrCl{N(R)=CMe2}(COD)] (R = H (10), Me (11)) are obtained from the appropriate [Ir{N(R)=CMe2}2(COD)]X and CO or Me4NCl, respectively. [Ir(Cp*)Cl(mu-Cl)]2 reacts with [Au(NH=CMe2)(PPh3)]ClO4 (1:2) to give [Ir(Cp*)(mu-Cl)(NH=CMe2)]2(ClO4)2 (12) which in turn reacts with PPh 3 or Me4NCl (1:2) to give [Ir(Cp*)Cl(NH=CMe2)(PPh3)]ClO4 (13) or [Ir(Cp*)Cl2(NH=CMe2)] (14), respectively. Complex 14 hydrolyzes in a CH2Cl2/Et2O solution to give [Ir(Cp*)Cl2(NH3)] (15). The reaction of [Ir(Cp*)Cl(mu-Cl)]2 with [Ag(NH=CMe2)2]ClO4 (1:4) gives [Ir(Cp*)(NH=CMe2)3](ClO4)2 (16a), which reacts with PPNCl (PPN = Ph3=P=N=PPh3) under different reaction conditions to give [Ir(Cp*)(NH=CMe2)3]XY (X = Cl, Y = ClO4 (16b); X = Y = Cl (16c)). Equimolar amounts of 14 and 16a react to give [Ir(Cp*)Cl(NH=CMe2)2]ClO4 (17), which in turn reacts with PPNCl to give [Ir(Cp*)Cl(H-imam)]Cl (R-imam = N,N'-N(R)=C(Me)CH2C(Me)2NHR (18a)]. Complexes [Ir(Cp*)Cl(R-imam)]ClO4 (R = H (18b), Me (19)) are obtained from 18a and AgClO4 or by refluxing 2b in acetone for 7 h, respectively. They react with AgClO4 and the appropriate neutral ligand or with [Ag(NH=CMe2)2]ClO4 to give [Ir(Cp*)(R-imam)L](ClO4)2 (R = H, L = (t)BuNC (20), XyNC (21); R = Me, L = MeCN (22)) or [Ir(Cp*)(H-imam)(NH=CMe2)](ClO4)2 (23a), respectively. The later reacts with PPNCl to give [Ir(Cp*)(H-imam)(NH=CMe2)]Cl(ClO4) (23b). The reaction of 22 with XyNC gives [Ir(Cp*)(Me-imam)(CNXy)](ClO4)2 (24). The structures of complexes 15, 16c and 18b have been solved by X-ray diffraction methods.  相似文献   

3.
A series of nickel(ii) complexes of the type [R-PNP]Ni(ER') ([R-PNP](-) = [N(o-C(6)H(4)PR(2))(2)](-); R = Ph, (i)Pr, Cy; E = NH, O, S; R' = Ph, (t)Bu) featuring unsupported, covalently bound pi-donor ligands have been prepared and characterized. The metathetical reactions of [R-PNP]NiCl (R = Ph, (i)Pr, Cy) with LiNHPh, NaOPh, or NaSPh, respectively, produced the corresponding anilide [R-PNP]Ni(NHPh), phenolate [R-PNP]Ni(OPh), and thiophenolate [R-PNP]Ni(SPh) derivatives. Treatment of [Ph-PNP]NiCl with either LiNH(t)Bu or NaO(t)Bu generated tert-butyl amide [Ph-PNP]Ni(NH(t)Bu) and tert-butoxide [Ph-PNP]Ni(O(t)Bu), respectively. In contrast, attempts to prepare analogous tert-butyl amide and tert-butoxide complexes of [(i)Pr-PNP](-) or [Cy-PNP](-) were not successful. Protonolysis studies of these nickel(ii)-heteroatom complexes revealed the basic reactivity of these pi-donor ligands. The basicity follows the order NH(t)Bu > O(t)Bu > NHPh > OPh > SPh. In addition to solution NMR spectroscopic data for all new compounds, X-ray structures of [(i)Pr-PNP]Ni(NHPh) and [(i)Pr-PNP]Ni(OPh) are presented.  相似文献   

4.
Alkylation of (ArNHCH2CH2){(2-C5H4N)CH2}NH with RX [RX = MeI, 4-CH2=CH(C6H4)CH2Cl) and (2-C5H5N)CH2Cl] in the presence of base has allowed access to the sterically demanding multidentate nitrogen donor ligands, {(2,4,6-Me3C6H2)NHCH2CH2}{(2-C5H4N)CH2}NMe (L1), {(2,6-Me3C6H3)NHCH2CH2}{(2-C5H4N)CH2}NCH2(C6H4)-4-CH=CH2 (L2) and (ArNHCH2CH2){(2-C5H4N)CH2}2N (Ar = 2,4-Me2C6H3 L3a, 2,6-Me2C6H3 L3b) in moderate yield. L3 can also be prepared in higher yield by the reaction of (NH2CH2CH2){(2-C5H4N)CH2}2N with the corresponding aryl bromide in the presence of base and a palladium(0) catalyst. Treatment of L1 or L2 with MCl2 [MCl2 = CoCl2.6H2O or FeCl2(THF)1.5] in THF affords the high spin complexes [(L1)MCl2](M = Co 1a, Fe 1b) and [(L2)MCl2](M = Co 2a, Fe 2b) in good yield, respectively; the molecular structure of reveals a five-coordinate metal centre with bound in a facial fashion. The six-coordinate complexes, [(L3a)MCl2](M = Co 3a, Fe 3b, Mn 3c) are accessible on treatment of tripodal L3a with MCl2. In contrast, the reaction with the more sterically encumbered leads to the pseudo-five-coordinate species [(L3b)MCl2](M = Co 4a, Fe 4b) and, in the case of manganese, dimeric [(L3b)MnCl(mu-Cl)]2 (4c); in 4a and 4b the aryl-substituted amine arm forms a partial interaction with the metal centre while in 4c the arm is pendant. The single crystal X-ray structures of , 1a, 3b.MeCN, 3c.MeCN, 4b.MeCN and 4c are described as are the solution state properties of 3b and 4b.  相似文献   

5.
N-Trimethylsilyl o-methylphenyldiphenylphosphinimine, (o-MeC6H4)PPh2=NSiMe3 (1), was prepared by reaction of Ph2P(Br)=NSiMe3 with o-methylphenyllithium. Treatment of 1 with LiBun and then Me3SiCl afforded (o-Me3SiCH2C6H4)PPh2=NSiMe3 (2). Lithiations of both 1 and 2 with LiBu(n) in the presence of tmen gave crystalline lithium complexes [Li{CH(R)C6H4(PPh(2=NSiMe3)-.tmen](3, R = H; 4, R = SiMe3). From the mother liquor of 4, traces of the tmen-bridged complex [Li{CH(SiMe3)C6H4(PPh2=NSiMe3)-2}]2(mu-tmen) (5) were obtained. Reaction of 2 with LiBun in Et2O yielded complex [Li{CH(SiMe3)C6H4(PPh2=NSiMe3)-2}.OEt2] (6). Reaction of lithiated with Me2SiCl2 in a 2:1 molar ratio afforded dimethylsilyl-bridged compound Me2Si[CH2C6H4(PPh2=NSiMe3)-2]2 (7). Lithiation of 7 with two equivalents of LiBun in Et2O yielded [Li2{(CHC6H4(PPh2=NSiMe3)-2)2SiMe2}.0.5OEt2](8.0.5OEt2). Treatment of 4 with PhCN formed a lithium enamide complex [Li{N(SiMe3)C(Ph)CHC6H4(PPh2=NSiMe3)-2}.tmen] (9). Reaction of two equivalents of 5 with 1,4-dicyanobenzene gave a dilithium complex [{Li(OEt2)2}2(1,4-{C(N(SiMe3)CHC6H4(PPh2=NSiMe3)-2}2C6H4)] (10). All compounds were characterised by NMR spectroscopy and elemental analyses. The structures of compounds 2, 3, 5, 6 and 9 have been determined by single crystal X-ray diffraction techniques.  相似文献   

6.
7.
The crystal structure of 2,6-di(Pr(i))aniline hydrochloride contains hydrogen-bonded cubanes analogous to those in the complexes [M(2+)(2,6-di(Pr(i))C6H5N(2-))]4, M = Sn, Pb.  相似文献   

8.
R2Bi-BiR2 [1; R = 2,6-(Me2NCH2)2C6H3], a dibismuthane that exists in different forms in the crystalline state, reacts in air with the formation of the peroxide [R(2)Bi]2(O2) (2) and partial oxidation of the pendant (dimethylamino)methyl groups, yielding the mononuclear bismuth complex R'R' 'Bi (3) [R' = 2-(Me2NCH2)-6-{Me2N(O)CH2}C6H3; R' ' = 2-(Me2NCH2)-6-{O(O)C}C6H3].  相似文献   

9.
R2BiOH (1) [R = 2-(Me2NCH2)C6H4] and (R2Bi)2O (2) are formed by hydrolysis of R2BiCl with KOH. Single crystals of were obtained by air oxidation of (R2Bi)2. The reaction of R2BiCl and Na2CO3 leads to (R2Bi)2CO3 (3). 3 is also formed by the absorption of CO2 from the air in solutions of 1 or 2 in diethyl ether or toluene. (R2Bi)2S (4) is obtained from R2BiCl and Na2S or from (R2Bi)2 and S8. Exchange reactions between R2BiCl and KBr or NaI give R2BiX [X = Br (5), I (6)]. The reaction of RBiCl2 (7) with Na2S and [W(CO)5(THF)] gives cyclo-(RBiS)2[W(CO)5]2 (8). cyclo-(R'BiS)2 (9) [R' = 2,6-(Me2NCH2)2C6H3] is formed by reaction of R'BiCl2 and Na2S. The structures of were determined by single-crystal X-ray diffraction.  相似文献   

10.
The syntheses of several new CpTiCl2(OR) (R = alkyl, aryl) complexes are described. It was possible to isolate pure product when the R group is substituted such as to cause steric crowding at the metal centre; for example, particularly good yields of the phenolate complexes were obtained when there were isopropyl substituents in the 2 and 6 positions of the phenolate. Electrochemical studies of the complexes in dry THF show that the TiIII complexes are relatively stable, but only a diol complex could be reduced further to a TiII species. In general, the TiIV complexes undergo a reversible 1e reduction reaction. The chemistry is more complex if the electrolyte contains added water: both the TiIV and TiIII complexes can react with water, the OR group being replaced by OH. The reaction is particularly rapid for the TiIII alkoxide complexes.  相似文献   

11.
The kinetics of the equilibrium reaction between [Ni(SC(6)H(4)R-4)(2)(dppe)] (R= MeO, Me, H, Cl, or NO(2); dppe = Ph(2)PCH(2)CH(2)PPh(2)) and mixtures of [lutH](+) and lut (lut = 2,6-dimethylpyridine) in MeCN to form [Ni(SHC(6)H(4)R-4)(SC(6)H(4)R-4)(dppe)](+) have been studied using stopped-flow spectrophotometry. The kinetics for the reactions with R = MeO, Me, H, or Cl are consistent with a single-step equilibrium reaction. Investigation of the temperature dependence of the reactions shows that DeltaG = 13.6 +/- 0.3 kcal mol(-)(1) for all the derivatives but the values of DeltaH and DeltaS vary with R (R = MeO, DeltaH() = 8.5 kcal mol(-)(1), DeltaS = -16 cal K(-)(1) mol(-)(1); R = Me, DeltaH() = 10.8 kcal mol(-)(1), DeltaS = -9.5 cal K(-)(1) mol(-)(1); R = Cl, DeltaH = 23.7 kcal mol(-)(1), DeltaS = +33 cal K(-)(1) mol(-)(1)). With [Ni(SC(6)H(4)NO(2)-4)(2)(dppe)] a more complicated rate law is observed consistent with a mechanism in which initial hydrogen-bonding of [lutH](+) to the complex precedes intramolecular proton transfer. It seems likely that all the derivatives operate by this mechanism, but only with R = NO(2) (the most electron-withdrawing substituent) does the intramolecular proton transfer step become sufficiently slow to result in the change in kinetics. Studies with [lutD](+) show that the rates of proton transfer to [Ni(SC(6)H(4)R-4)(2)(dppe)] (R = Me or Cl) are associated with negligible kinetic isotope effect. The possible reasons for this are discussed. The rates of proton transfer to [Ni(SC(6)H(4)R-4)(2)(dppe)] vary with the 4-R-substituent, and the Hammett plot is markedly nonlinear. This unusual behavior is attributable to the electronic influence of R which affects the electron density at the sulfur.  相似文献   

12.
Reaction of the ditopic phosphanylarylthiol 1-P(Biph)-2-SHC(6)H(4) (BiphPSH, Biph = 1,1'-biphenyl-2,2'-diyl), prepared by lithiation-electrophilic substitution, with NiCl(2)·6H(2)O, Na(2)[PdCl(4)] and [PtI(2)(cod)] (cod = 1,5-cyclooctadiene) in a 2:1 ratio and in the presence of NEt(3) led to formation of exclusively cis isomers of the square-planar complexes cis-[M{(1-P(Biph)-2-S-C(6)H(4))-κ(2)S,P}(2)] ([M{(BiphPS)-κ(2)S,P}(2)]; M = Ni (1), Pd (2), Pt (3)). Density functional calculations support the assumption that this is probably due to intramolecular π-π interaction of the biphenyl groups, which results in enhanced stability of the cis isomers. Compound 1 is the first example of a structurally characterised mononuclear cis-bis(phosphanylthiolato)nickel(III) complex. Small amounts of the trinuclear complex [{PtI(1-P(Biph)-μ-2-S-C(6)H(4)-κ(2)S,P)}(3)] (4) are also formed besides the mononuclear platinum bis-chelate complex 3.  相似文献   

13.
The free nido-diphosphine anions [(PR(2))(2)C(2)B(9)H(10)](-) (R = Ph, (i)Pr) show luminescence properties whereas the closo-diphosphines [(PR(2))(2)C(2)B(10)H(10)] do not. Four families of three-coordinate complexes of stoichiometry [Au[(PR(2))(2)C(2)B(10)H(10)]L]OTf (L = tertiary phosphine) and [Au[(PR(2))(2)C(2)B(9)H(10)]L] have been studied in order to analyze the influence of the closo- or nido-nature of the diphosphine, the monophosphine coordinated to gold and the substituent at the diphosphine on the luminescence of the complexes. Only the nido-derivatives show luminescence. The maxima of the emissions are shifted to lower energies than those of the corresponding free nido-diphosphines. When the substituent at the diphosphine is phenyl, a new emission appears, which has been assigned as arising from a metal to ligand charge transfer [Au-->pi(L)] excited state.  相似文献   

14.
The reactions of [Cp*Fe(mu-SR1)3FeCp*] (Cp* = eta5-C5Me5; R1 = Et, Me) with 1.5 equiv R2NHNH2 (R2 = Ph, Me) give the mu-eta2-diazene diiron thiolate-bridged complexes [Cp*Fe(mu-SR1)2(mu-eta2-R2N NH)FeCp*], along with the formation of PhNH2 and NH3. These mu-eta2-diazene diiron thiolate-bridged complexes exhibit excellent catalytic N-N bond cleavage of hydrazines under ambient conditions.  相似文献   

15.
Heterobinuclear oxometalate anions based upon [CrMoO7]2-, [CrWO7]2-, and [MoWO7]2- were generated and transferred to the gas phase by the electrospray process from acetonitrile solutions containing two of the salts (Bu4N)2[MO4] (M = Cr, Mo, W). Their reactivities were examined and compared with those of the related homobinuclear anions based upon [M2O7]2- (M = Cr, Mo, W). Particular emphasis was placed upon reactions relevant to gas-phase catalytic cycles described previously for oxidation of alcohols by [Mo2O6(OH)]- (Waters, T.; O'Hair, R. A. J.; Wedd, A. G. J. Am. Chem. Soc. 2003, 125, 3384-3396). The protonated anions [MM'O6(OH)]- each reacted with methanol with loss of water to form [MM'O6(OCH3)]- at a rate that was intermediate between those of [M2O6(OH)]- and [M'2O6(OH)]-. The butylated anions [MM'O6(OBu)]- were generated by collisional activation of the ion-pairs {Bu4N+ [MM'O7]2-}-. Collisional activation of [MM'O6(OBu)]- resulted in either the loss of butanal (redox reaction) or the loss of butene (elimination reaction), with the detailed nature of the observations depending on the nature of both M and M'. Selective 18O labeling indicated that the butoxo ligands of [CrMoO6(OBu)]- and [CrWO6(OBu)]- were located on molybdenum and tungsten, respectively. This structural insight allowed a more detailed comparison of reactivity with the homobinuclear species, and highlighted the importance of the neighboring metal center in these reactions.  相似文献   

16.
The new hydride complexes [Mo2Cp2(mu-H)(mu-PHR)(CO)4] having bulky substituents (R = 2,4,6-C(6)H2tBu3= Mes*, R = 2,4,6-C6H2Me3= Mes) have been prepared in good yield by addition of Li[PHR] to the triply bonded [Mo2Cp2(CO)4] and further protonation of the resulting anionic phosphide complex [Mo2Cp2(mu-PHR)(CO)4]-. Protonation of the Mes* compound with either [H(OEt2)2][B{3,5-C6H3(CF3)2}4] or HBF4.OEt2 gives the cationic phosphinidene complex [Mo2Cp2(mu-H)(mu-PMes*)(CO)4]+ in high yield. In contrast, protonation of the analogous hydride compounds with Mes or Cy substituents on phosphorus give the corresponding unsaturated tetracarbonyls [Mo2Cp2(mu-PHR)(CO)4]+, which are unstable at room temperature and display a cis geometry. Decomposition of the latter give the electron-precise pentacarbonyls [Mo2Cp2(mu-PHR)(mu-CO)(CO)4]+, also displaying a cis arrangement of the metal fragments. In the presence of BF4- as external anion, fluoride abstraction competes with carbonylation to yield the neutral fluorophosphide hydrides [Mo2Cp2(mu-H)(mu-PFR)(CO)4]. Similar results were obtained in the protonation reactions of the hydride compounds having a Ph substituent on phosphorus. In that case, using HCl as protonation reagent gave the chloro-complex [Mo2ClCp2(mu-PHPh)(CO)4] in good yield. The structures and dynamic behaviour of the new compounds are analyzed on the basis of solution IR and 1H, 31P, 19F and 13C NMR data as well as the X-ray studies carried out on [Mo2Cp2(mu-H)(mu-PHMes)(CO)4](cis isomer), [Mo2Cp2(mu-H)(mu-PFMes)(CO)4](trans isomer), [Mo2Cp2(mu-PHCy)(mu-CO)(CO)4](BF4) and [Mo2ClCp2(mu-PHPh)(CO)4].  相似文献   

17.
The cyclostibane R(4)Sb(4)(1)(R = 2-(Me(2)NCH(2))C(6)H(4)) was synthesized by reduction of RSbCl(2) with Mg in THF or with Na in liquid NH(3). The reaction of 1 with [W(CO)(5)(THF)] gives the stibinidene complex RSb[W(CO)(5)](2)(2). RSbCl(2) and (RSbCl)(2)E [E = O (6), E = S (8)] react with KOH or Na(2)S in toluene/water to give the heterocycles (RSbE)(n)[E = O, n= 3 (3); E = S, n= 2 (4)]. The chalcogeno-bridged compounds of the type (RSbCl)(2)E [E = O (6), E = S (8)] were synthesized by reaction of RSbCl(2) with KOH or Na(2)S in toluene/water, but also by reaction of RSbCl(2) with the heterocycles (RSbE)(n). The compounds (RSbI)(2)O (7) and (RSbBr)(2)S (9) were prepared via halogen-exchange reactions between (RSbCl)(2)E and NaI (E = O) or KBr (E = S) or by reactions between RSbI(2) and KOH or RSbBr(2) and Na(2)S. The reaction of cyclo-(RSbS)(2) with W(CO)(5)(THF) in THF results in trapping of the cis isomer in cyclo-(RSbS)(2)[W(CO)(5)](5). The solution behaviour of the compounds was investigated by (1)H and (13)C NMR spectroscopy. The molecular structures of compounds 1-7 and 9 were determined by single-crystal X-ray diffraction.  相似文献   

18.
The synthesis and structure of a Zn-Zn-bonded compound supported by a doubly reduced alpha-diimine ligand, [Na(THF)2]2 x [LZn-ZnL] (L = [(2,6-(i)Pr2C6H3)N(Me)C]2(2-)) are reported, with a Zn-Zn bond length of 2.399(1) angstroms.  相似文献   

19.
The cross-coupling reaction of 9-I-3-(π-C5H5)-3,1,2-CoC2B9H10 with organozinc compounds catalyzed by palladium complexes was used to synthesize the first representative ofB-phenyl-substituted carboranes, 9-C6H5-3-(π-C5H5)-3,1,2-CoC2B9H10. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No: 6, pp. 1253–1254, June, 1998.  相似文献   

20.
A neutral selenium donor ligand, [CpFe(CO)(2)P(Se)(OR)(2)] is used for the construction of Cu(I) and Ag(I) complexes with a well-defined coordination environment. Four clusters [M{CpFe(CO)(2)P(Se)(OR)(2)}(3)](PF(6)), (where M = Cu, R = (n)Pr, ; R = (i)Pr, and M = Ag, R = (n)Pr, ; R = (i)Pr, ) are isolated from the reaction of [M(CH(3)CN)(4)(PF(6))] (where M = Cu or Ag) and [CpFe(CO)(2)P(Se)(OR)(2)] in a molar ratio of 1 : 3 in acetonitrile at 0 degrees C. The reaction of [CpFe(CO)(2)P(Se)(O(i)Pr)(2)] with cuprous halides in acetone produce two mixed-metal, Cu(I)(2)Fe(II)(2) clusters, [Cu(mu-X) {CpFe(CO)(2)P(Se)(O(i)Pr)(2)}](2) (X = Cl, ; Br, ). All six clusters have been fully characterized spectroscopically ((1)H, (13)C, (31)P, and (77)Se NMR, IR), and by elemental analyses. X-Ray crystal structures of and consist of discrete cationic clusters in which three iron-selenophosphito fragments are linked to the central copper or silver atom via selenium atoms. Both clusters and crystallize in the noncentrosymmetric, hexagonal space group P6[combining macron]2c. The coordination geometry around the copper or silver atom is perfect trigonal-planar with Cu-Se and Ag-Se distances, 2.3505(7) and 2.5581(7) A, respectively. X-Ray crystallography also reveals that each copper center in neutral heterometallic clusters and is trigonally coordinated to two halide ions and a selenium atom from the selenophosphito-iron moiety. The structures can also be delineated as a dimeric unit which is generated by an inversion center and has a Cu(2)X(2) parallelogram core. The dihedral angle between the Cu(2)X(2) plane and the plane composed of Cp ring is found to be 24.62 and 84.58 degrees for compound and , respectively. Hence the faces of two opposite Cp rings are oriented almost perpendicular to the Cu(2)X(2) plane in , but are close to be parallel in . This is the first report of the coordination chemistry of the anionic selenophosphito moiety [(RO)(2)PSe](-), the conjugated base of a secondary phosphine selenide, which acts as a bridging ligand with P-coordination on iron and Se-coordination to copper or silver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号