首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 438 毫秒
1.
A one‐pot three‐component procedure to efficiently create the 1,3‐diazabicyclo[3.1.0]hex‐3‐ene system is reported. The molecular structure of 2,4,6‐triphenyl‐1,3‐diazabicyclo[3.1.0]hex‐3‐ene ( 3 ) was studied by X‐ray diffraction and compared to ab initio and density‐functional‐theory (DFT) calculations restricted to the core moiety. Geometry optimizations for structural isomers and tautomeric forms of this aziridine fragment, taken as simplified models, were carried out at high calculation levels. Moreover, the same methods were utilized to evaluate the proton affinity of two crucial aziridine tautomers.  相似文献   

2.
A short and concise synthesis of novel, chiral bicyclo[3.1.0]hex‐2‐ene amino acid derivatives 13 and 14 has been developed. The key step is a stereo‐ and regioselective allylic amination of exo‐ and endo‐methyl bicyclo[3.1.0]hex‐2‐ene‐6‐carboxylates 8 and 9 , which were prepared from 7,7‐dichlorobicyclo[3.2.0]hept‐2‐en‐6‐one ( 1 ). These amino acid derivatives are useful building blocks in medicinal chemistry and can be prepared as chiral compounds by using either (+)‐ 1 or (?)‐ 1 as starting material.  相似文献   

3.
The activities of a series of acyclic enediynes, 2‐(6‐substituted hex‐3‐ene‐1,5‐diynyl)benzonitriles ( 1 – 5 ) and their derivatives 7 – 23 were evaluated against several solid tumor cell lines and topoisomerase I. Compounds 1 – 5 show selective cytotoxicity with Hepa cells, and 2‐[6‐phenylhex‐3‐ene‐1,5‐diynyl]benzonitrile ( 5 ) reveals the most‐potent activity. Analogues 8 – 10 and 13 – 22 also have the same effect with DLD cells; 1‐[(Z)‐dec‐3‐ene‐1,5‐diynyl)‐4‐nitrobenzene 21 shows the highest activity among them. Moreover, 1‐[(Z)‐dec‐3‐ene‐1,5‐diynyl]‐2‐(trifluoromethyl)benzene ( 20 ) exhibits the strongest inhibitory activity with the Hela cell line. Derivatives 9, 10, 18 , and 23 display inhibitory activities with topoisomerase I at 87 μM . The cell‐cycle analysis of compound 5 , which induces a significant blockage in S phase, indicates that these novel enediynes probably undergo other biological pathways leading to the cytotoxicity, except the inhibitory activity toward topoisomerase I.  相似文献   

4.
This paper presents the synthesis of a series of 5,6‐dihydro‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ring system derivatives with a [1,2,3]triazole ring bonded in position 2. The procedure is based on cycloaddition of substituted alkyl azides to the terminal triple bond of 5,6‐dihydro‐2‐ethynyl‐9‐methyl‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ( 4 ). This cycloaddition produced two regioisomers ?5,6‐dihydro‐9‐methyl‐2‐(1‐substituted‐1H‐[1,2,3]triazol‐5‐yl)‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ( 7 ) and 2‐(1‐substituted‐1H‐[1,2,3]triazol‐4‐yl) derivative 8 . The required 2‐ethynyl deriva tive 4 was obtained from the starting 2‐unsubstituted compound 1 by bromination to yield the 2‐bromo derivative 2 , which was converted by Sonogashira reaction to trimethylsilylethyne 3 and finally, the protective trimethylsilyl group was removed by hydrolysis.  相似文献   

5.
3-[1′(1′H)-Substituent-pyrazol-5′-yl]benzo[5,6]coumarins and 3-(1′,2′-oxazol-5′-yl)benzo[5,6]coumarin were prepared via condensation of 3-(2′-formyl-1′-chlorovinyl)benzo[5,6] coumarin with hydrazine derivatives or hydroxylamine.Reaction of 3-[1′(1′H)-pyrazol-5′-yl]benzo[5,6]coumarin with alkyl halides,olefinic compunds or acid chlorides are described.  相似文献   

6.
Tetrakis(bicyclo[2.2.2]oct‐2‐ene)‐fused calix[4]pyrrole, 5 , was obtained starting from (E)‐1,2‐bis(phenylsulfonyl)ethylene. This new calixpyrrole derivative is the prospective precursor of tetrabenzocalix[4]pyrrole, a potential ion‐pair receptor and an attractive species as a possible deep‐walled ‘molecular container’.  相似文献   

7.
Summary: A tandem catalytic system, composed of (η5‐C5H4CMe2C6H5)TiCl3 ( 1 )/MMAO (modified methyl aluminoxane) and [(η5‐C5Me4)SiMe2(tBuN)]TiCl2 ( 2 )/MMAO, was applied for the synthesis of ethylene–hex‐1‐ene copolymers with ethylene as the only monomer stock. During the reaction, 1 /MMAO trimerized ethylene to hex‐1‐ene, while 2 /MMAO copolymerized ethylene with the in situ produced hex‐1‐ene to poly(ethylene–hex‐1‐ene). By changing the catalyst ratio and reaction conditions, a series of copolymer grades with different hex‐1‐ene fractions at high purity were effectively produced.

The overall strategy of the tandem 1 / 2 /MMAO catalytic system.  相似文献   


8.
Summary: By a sidearm approach, a series of titanium complexes bearing an [O, N, S] tridentate ligand have been synthesized and proven to be highly active for ethylene polymerization. The complexes also show excellent ability to copolymerize ethylene with hex‐1‐ene and norbornene. The effects of the different sidearms on the catalytic behavior of the complexes were studied in detail.

The copolymerization of ethylene with hex‐1‐ene using titanium complexes bearing [O, N, S] tridentate ligands as catalysts.  相似文献   


9.
The facile synthesis of several 1,3‐diazabicyclo[3.1.0]hex‐3‐ene derivatives with varying substitutions such as 2‐methyl‐6‐(4‐nitrophenyl)‐2,4‐diphenyl‐( 1 ), 2‐methyl‐6‐(4‐nitrophenyl)‐4‐phenyl‐2‐(pyridin‐3‐yl)‐( 2 ), 2‐(furan‐2‐yl)‐6‐(4‐nitrophenyl)‐4‐phenyl‐( 3 ), 2‐(furan‐2‐yl)‐6‐(3‐nitrophenyl)‐4‐phenyl‐( 4 ), 6‐(3‐nitrophenyl)‐2,4‐diphenyl‐( 5 ) and 6‐(4‐chlorophenyl)‐4‐(3‐nitrophenyl)‐2‐phenyl‐( 6 ) that all behave as “intelligent materials” are reported.  相似文献   

10.
6‐Aminopyridine‐2(1H)‐thiones 1a,b reacted with dimethylformamide‐dimethylacetal (DMF‐DMA) to give the corresponding 6‐{[(N,N‐dimethylamino)methylene]amino}pyridine derivatives 2a,b . The latter compounds reacted with hydrazine hydrate to afford the 3,6‐diamino‐1H‐pyrazolo[3,4‐b]pyridine derivative 4 and 3‐amino‐5‐hydrazino‐1H‐pyrazolo[4′,3′:5,6]pyrido[2,3‐d]pyrimidine derivative 7 , respectively. Compound 4 condensed with DMF‐DMA to yield the 3,6‐bis{[(N,N‐dimethylamino)methylene]amino}‐1H‐pyrazolo[3,4‐b]pyridine derivative 10 , which reacted with malononitrile to give the corresponding pyridopyrazolopyrimidine derivative 15 . © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:399–404, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20312  相似文献   

11.
Dehydrative ring closure reactions were carried out on fused 4‐(2‐hydroxyethylamino) (or 2‐hydroxyethoxy or 2‐hydroxyethylthio)pyrimidines ( 2a , 2b , 2c ) to give fused 2,3‐dihydroimidazo[1,2‐c] (or 2,3‐dihydrooxazolo[3,2‐c] or 2,3‐dihydrothiazolo[3,2‐c])pyrimidines. This reaction produced the pentacyclic 1,2,4,5‐tetrahydro[1]benzothieno[2′,3′:6,7]thiepino[4,5‐e]imidazo[1,2‐c]pyrimidine ( 3a ) and 1,2,4,5‐tetrahydro[1]benzothieno[2′,3′:6,7]thiepino[4,5‐e]thiazolo[3,2‐c]pyrimidinium chloride ( 3c ) from the 2‐hydroxyethylamino‐derivative and 2‐hydroxyethylthio‐derivative, respectively. In contrast, 2‐hydroxyethoxy‐derivative ( 2b ) gave the rearrangement product, 3‐(2‐chloroethyl)‐5,6‐dihydro[1]benzothieno[3′,2′:2,3]thiepino[4,5‐d]pyrimidin‐4(3H)‐one ( 4 ). Effects of the synthesized compounds on collagen‐induced platelet aggregation were also evaluated.  相似文献   

12.
A new generation of saturated benzene mimetics, 2‐oxabicyclo[2.1.1]hexanes, was developed. These compounds were designed as analogues of bicyclo[1.1.1]pentane with an improved water solubility. Crystallographic analysis of 2‐oxabicyclo[2.1.1]hexanes revealed that they occupy a novel chemical space, but, at the same time, resemble the motif of meta‐disubstituted benzenes.  相似文献   

13.
The rate of the oxidation of N‐amino‐3‐azabicyclo[3.3.0]octane by chloramine has been studied by GC and HPLC between pH 10.5 and 13.5. The second‐order reaction exhibits specific acid catalysis. The formation of N,N′‐azo‐3‐azabicyclo[3.3.0]octane or 3,4‐diazabicyclo[4.3.0]non‐2‐ene is pH, concentration, and temperature dependent. In alkaline media, the exclusive formation of 3,4‐diazabicyclo[4.3.0]non‐2‐ene is observed. Kinetic studies show that the oxidation of N‐amino‐3‐azabicyclo[3.3.0]octane by chloramine is a multistep process with the initial formation of a diazene‐type intermediate, which is converted by hydroxide ions into 3,4‐diazabicyclo[4.3.0]non‐2‐ene. Because it was not possible to follow the rate of change of the intermediate concentration, to determine the kinetics of 3,4‐diazabicyclo[4.3.0]non‐2‐ene formation, a procedure based on the degeneration of the precursor process was adopted. An appropriate mathematical treatment allowed a quantitative interpretation of all the phenomena observed over the given pH interval. The activation parameters were determined. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 327–338, 2006  相似文献   

14.
1‐Ethyl‐4‐hydroxy‐2‐oxo‐1,2‐dihydroquinoline‐3‐carbaldehyde ( 1 ) was annulated using malonic acid and/or its ethyl ester to furnish pyrano[3,2‐c]quinoline‐3‐carboxylic acid 2 and its ester 3 . Interconversions between acid 2 and ester 3 were successfully carried out. The anticipated pyrano[3,2‐c]quinoline‐3‐carboxamides 5–12 were conveniently attained via condensation of ester 3 with the proper amine. Surprisingly, treatment of ester 3 with dimethylformamide (DMF) in acidic media led to the carboxamide 5 . All attempts to convert ester 3 to its corresponding acid hydrazides by interaction with the proper hydrazine derivative led to formation of pyrazolidinediones 15 and 17 . Ester 3 underwent cyclo‐condensation with malononitrile dimer affording pyrido[3′,4′:5,6]pyrano[3,2‐c]quinoline derivative 18 . The new compounds revealed significant antioxidant effect, which suggests that most of them are possible potent antioxidant agents.  相似文献   

15.
A new bridgehead nitrogen hetero‐ cycle viz. 11‐carboethoxy‐9‐oxo‐pyrimido[3′2′:3,4]‐1,2,4‐triazino[5,6‐b]indole 3 has been synthesized from 3‐azido‐5H‐1,2,4‐triazino[5,6‐b]indole 2 by its reaction with diethyl fumerate. The intermediate 2 was obtained by treating 3‐hydrazino‐5H‐1,2,4‐triazino[5,6‐b]indole with NaNO2 in presence of polyphosphoric acid. A plausible mechanism for the formation of 3 has been formulated and discussed. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:272–276, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20199  相似文献   

16.
The reaction of thionyl chloride with the semicarbazone 2 gave 4,5‐dihydro‐6,9‐dihydroxynaphtho‐[1,2‐d][1,2,3]thiadiazole ( 3 ) instead of 4,5‐dihydro‐6,9‐dimethyoxynaphtho[1,2‐d][1,2,3]thiadiazole ( 4 ). Selenium dioxide oxidation of compound 2 gave 4,5‐dihydro‐6,9‐dimethyoxynaphtho[1,2‐d][1,2,3]selenadiazole ( 5 ). Oxidation of compound 5 with 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone afforded 6,9‐dimethyoxynaphtho[1,2‐d][1,2,3]selenadiazole ( 6 ).  相似文献   

17.
Previously synthesized 2‐(3′‐chloro‐5′,6′‐dicyanopyrazin‐2′‐yl)cyclopentan‐1‐one 1 , obtained from the reaction of 2,3‐dichloro‐5,6‐dicyanopyrazine with 1‐pyrrolidino‐1‐cyclopentene, was further reacted with primary alkylamines to give mixtures of diastereomer of 5‐alkyl‐2,3‐dicyano‐5a,8a‐dihy‐dro‐5a‐hydroxycyclopentano[1′,2′:4,5]pyrrolo[2,3‐b]pyrazines 3a‐h in high yield. The reaction of 2‐alkylamino‐3‐chloro‐5,6‐dicyanopyrazine with 1‐pyrrolidino‐1‐cyclohexene gave 5‐alkyl‐2,3‐dicyanocyclopentano[1′,2′:4,5]pyrrolo[2,3‐b]pyrazines 5a‐b together with 5‐alkylamino‐2,3‐dicyano‐6‐pyrrolidinopyrazines 6a‐b . The products prepared are all of interest as potential pesticides and new fluorescent chromophores.  相似文献   

18.
The two double‐bond isomers 3‐iodo‐2,6,6‐trimethylbicyclo[3.1.1]hept‐2‐ene ( 6b ) and 3‐iodo‐4,6,6‐trimethylbicyclo[3.1.1]hept‐2‐ene ( 11 ) were synthesized by reacting 2,6,6‐trimethylbicyclo[3.1.1]heptan‐3‐one ( 9 ) with hydrazine, followed by treatment with I2 in the presence of Et3N. Treatment of 11 with t‐BuOK as base in diglyme at 220° resulted in the formation of 9 and 6,6‐dimethyl‐4‐methylidenebicyclo[3.1.1]hept‐2‐ene ( 12 ). For the formation of 9 , the cyclic allene 7 is proposed as an intermediate. Treatment of the second isomer, 6b , with t‐BuOK at 170° gave rise to the diene 12 and the dimerization product 17 . The underlying mechanism of this transformation is discussed. On the basis of density‐functional‐theory (DFT) calculations on the allene 7 and the alkyne 15 , the formation of the latter as the intermediate was excluded.  相似文献   

19.
Indane‐1,3‐dione 1 reacts with salicylaldehyde 5 and malononitrile 3 to afford 6‐amino‐7‐imino‐7H‐indeno‐[2′,1′:5,6]‐pyrano‐[3,4 ‐ c]‐chromene 6 , which could be transformed into the corresponding 7‐oxo derivative 7 . 2‐(3‐Oxoindan‐1‐ylidene)‐malononitrile 10 couples with the diazonium salts 8 , 14 , and 15 to afford after cyclization the indeno‐[2,1‐c]‐pyridazine 13 and the indeno‐[2′,1′:3,4]‐pyridazino‐[1,6‐a]‐quinazoline derivatives 20 and 21 , respectively.  相似文献   

20.
The reaction of prop‐1‐ene‐1,3‐sultone 1 with a variety of nitrile oxides 3 afforded novel [3+2] cycloaddition products 4 in good yield. The cycloaddition reaction achieved excellent regioselectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号