首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
[(ArPMI)Mo(CO)4] complexes (PMI=pyridine monoimine; Ar=Ph, 2,6‐di‐iso‐propylphenyl) were synthesized and their electrochemical properties were probed with cyclic voltammetry and infrared spectroelectrochemistry (IR‐SEC). The complexes undergo a reduction at more positive potentials than the related [(bipyridine)Mo(CO)4] complex, which is ligand based according to IR‐SEC and DFT data. To probe the reaction product in more detail, stoichiometric chemical reduction and subsequent treatment with CO2 resulted in the formation of a new product that is assigned as a ligand‐bound carboxylate, [(PMI)Mo(CO)3(CO2)]2?, by NMR spectroscopic methods. The CO2 adduct [(PMI)Mo(CO)3(CO2)]2? could not be isolated and fully characterized. However, the C?C coupling between the CO2 molecule and the PDI ligand was confirmed by X‐ray crystallographic characterization of one of the decomposition products of [(PMI)Mo(CO)3(CO2)]2?.  相似文献   

3.
[RuCl(arene)(μ‐Cl)]2 dimers were treated in a 1:2 molar ratio with sodium or thallium salts of bis‐ and tris(pyrazolyl)borate ligands [Na(Bp)], [Tl(Tp)], and [Tl(TpiPr, 4Br)]. Mononuclear neutral complexes [RuCl(arene)(κ2‐Bp)] ( 1 : arene=p‐cymene (cym); 2 : arene=hexamethylbenzene (hmb); 3 : arene=benzene (bz)), [RuCl(arene)(κ2‐Tp)] ( 4 : arene=cym; 6 : arene=bz), and [RuCl(arene)(κ2‐TpiPr, 4Br)] ( 7 : arene=cym, 8 : arene=hmb, 9 : arene=bz) have been always obtained with the exception of the ionic [Ru2(hmb)2(μ‐Cl)3][Tp] ( 5′ ), which formed independently of the ratio of reactants and reaction conditions employed. The ionic [Ru(CH3OH)(cym)(κ2‐Bp)][X] ( 10 : X=PF6, 12 : X=O3SCF3) and the neutral [Ru(O2CCF3)(cym)(κ2‐Bp)] ( 11 ) have been obtained by a metathesis reaction with corresponding silver salts. All complexes 1 – 12 have been characterized by analytical and spectroscopic data (IR, ESI‐MS, 1H and 13C NMR spectroscopy). The structures of the thallium and calcium derivatives of ligand Tp, [Tl(Tp)] and [Ca(dmso)6][Tp]2 ? 2 DMSO, of the complexes 1 , 4 , 5′ , 6 , 11 , and of the decomposition product [RuCl(cym)(HpziPr, 4Br)2][Cl] ( 7′ ) have been confirmed by using single‐crystal X‐ray diffraction. Electrochemical studies showed that 1 – 9 and 11 undergo a single‐electron RuII→RuIII oxidation at a potential, measured by cyclic voltammetry, which allows comparison of the electron‐donor characters of the bis‐ and tris(pyrazol‐1‐yl)borate and arene ligands, and to estimate, for the first time, the values of the Lever EL ligand parameter for Bp, Tp, and TpiPr, 4Br. Theoretical calculations at the DFT level indicated that both oxidation and reduction of the Ru complexes under study are mostly metal‐centered with some involvement of the chloride ligand in the former case, and also demonstrated that the experimental isolation of the μ3‐binuclear complex 5′ (instead of the mononuclear 5 ) is accounted for by the low thermodynamic stability of the latter species due to steric reasons.  相似文献   

4.
The different thermally induced intermolecular electron transfer (IET) processes that can take place in the series of complexes [M(Cat‐N‐BQ)(Cat‐N‐SQ)]/[M(Cat‐N‐BQ)2], for which M=Co ( 2 ), Fe ( 3 ) and Ni( 4 ), and Cat‐N‐BQ and Cat‐N‐SQ denote the mononegative (Cat‐N‐BQ?) or dinegative (Cat‐N‐SQ2?) radical forms of the tridentate Schiff‐base ligand 3,5‐di‐tert‐butyl‐1,2‐quinone‐1‐(2‐hydroxy‐3,5‐di‐tert‐butylphenyl)imine, have been studied by variable‐temperature UV/Vis and NMR spectroscopies. Depending on the metal ion, rather different behaviors are observed. Complex 2 has been found to be one of the few examples so far reported to exhibit the coexistence of two thermally induced electron transfer processes, ligand‐to‐metal (IETLM) and ligand‐to‐ligand (IETLL). IETLL was only found to take place in complex 3 , and no IET was observed for complex 4 . Such experimental studies have been combined with ab initio wavefunction‐based CASSCF/CASPT2 calculations. Such a strategy allows one to solicit selectively the speculated orbitals and to access the ground states and excited‐spin states, as well as charge‐transfer states giving additional information on the different IET processes.  相似文献   

5.
Significant localization of the unpaired electron on the phosphorus atom of phosphasemiquinone radical anion 1 was revealed by EPR spectroscopy. This species was generated by reduction of 1 , the first stable p‐phosphaquinone. Employment of the 3,5‐di‐tert‐butyl‐4‐oxocyclohexa‐2,5‐dien‐1‐ylidene moiety was essential for the synthesis as well as the effective kinetic protection of 1 .  相似文献   

6.
The synthesis and characterization of a new unsymmetrical dinucleating N,O‐donor ligand, 2‐[N,N‐bis­(2‐pyridyl­methyl)­amino­methyl]‐6‐[N‐(3,5‐di‐tert‐butyl‐2‐oxidobenzyl)‐N‐(2‐pyridyl­amino)­aminomethyl]‐4‐methyl­phenol (H2Ldtb), as well as the X‐ray crystal structure of its corresponding mixed‐valence diacetate‐bridged manganese complex, di‐μ‐acetato‐μ‐{2‐[N,N‐bis­(2‐pyridylmethyl)amino­methyl]‐6‐[N‐(3,5‐di‐tert‐butyl‐2‐oxidobenzyl)‐N‐(2‐pyridyl­amino)­aminomethyl]‐4‐methylphenolato}dimanganese(II,III) tetra­phenyl­borate, [MnIIMnIII(C42H49N5O2)(C2H3O2)2](C24H20B), are reported. The complex may be regarded as an inter­esting structural model for the mixed‐valence MnII–MnIII state of manganese catalase.  相似文献   

7.
Tris‐o‐semiquinonato cobalt complexes react with a tetrapodal pyridine‐derived ligand to form dinuclear cobalt compounds of general formula (OMP)[CoQ2]2, where OMP = 2,2′‐(pyridine‐2,6‐diyl)bis(N1,N1,N3,N3‐tetramethylpropane‐1,3‐diamine), Q = mono‐ or dianion of 3,6‐di‐tert‐butyl‐o‐benzoquinone (complex 1 ) and it derivatives: 3,6‐di‐tert‐butyl‐4,5‐N,N′‐piperazino‐o‐benzoquinone (complex 2 ), and 3,6‐di‐tert‐butyl‐4‐Cl‐o‐benzoquinone (complex 3 ). Single crystal X‐ray crystallography of 1 and 3 indicates two bis‐quinonato cobalt units bound by an OMP ligand, which acts as a bridge. Each central cobalt atom is chelated by one N1,N1,N3,N3‐tetramethylpropane‐1,3‐diamine and two o‐quinonato fragments. The nitrogen atom of the pyridine ring is uncoordinated. All complexes were characterized by NIR‐IR and EPR spectroscopy, precise adiabatic vacuum calorimetry, and by variable‐temperature magnetic susceptibility measurements. All data indicate a reversible thermally driven redox‐isomeric (valence tautomeric) transformation in the solid state for all complexes.  相似文献   

8.
《化学:亚洲杂志》2018,13(19):2868-2880
The reaction of 3,7‐diacetyl‐1,3,7‐triaza‐5‐phosphabicyclo[3.3.1]nonane (DAPTA) with metal salts of CuII or NaI/NiII under mild conditions led to the oxidized phosphane derivative 3,7‐diacetyl‐1,3,7‐triaza‐5‐phosphabicyclo[3.3.1]nonane‐5‐oxide (DAPTA=O) and to the first examples of metal complexes based on the DAPTA=O ligand, that is, [CuII(μ‐CH3COO)2O‐DAPTA=O)]2 ( 1 ) and [Na(1κOO′;2κO‐DAPTA=O)(MeOH)]2(BPh4)2 ( 2 ). The catalytic activity of 1 was tested in the Henry reaction and for the aerobic 2,2,6,6‐tetramethylpiperidin‐1‐oxyl (TEMPO)‐mediated oxidation of benzyl alcohol. Compound 1 was also evaluated as a model system for the catechol oxidase enzyme by using 3,5‐di‐tert‐butylcatechol as the substrate. The kinetic data fitted the Michaelis–Menten equation and enabled the obtainment of a rate constant for the catalytic reaction; this rate constant is among the highest obtained for this substrate with the use of dinuclear CuII complexes. DFT calculations discarded a bridging mode binding type of the substrate and suggested a mixed‐valence CuII/CuI complex intermediate, in which the spin electron density is mostly concentrated at one of the Cu atoms and at the organic ligand.  相似文献   

9.
The synthesis and the structures of (i) the ligand N,N‐Diethyl‐N′‐3,5‐di(trifluoromethyl)benzoylthiourea HEt2dtfmbtu and (ii) the NiII and PdII complexes of HEt2dtfmbtu are reported. The ligand coordinates bidendate forming bis chelates. The NiII and the PdII complexes are isostructural. The also prepared CuII complex could not be characterized by X‐ray analysis. However, the preparation of diamagnetically diluted powders Cu/Ni(Et2dtfmbtu)2 and Cu/Pd(Et2dtfmbtu)2 suitable for EPR studies was successful. The EPR spectra of the Cu/Ni and Cu/Pd systems show noticeable differences for the symmetry of the CuS2O2 unit in both complexes: the Cu/Pd system is characterized by axially‐symmetric g< and A cu tensors; for the Cu/Ni system g and A Cu have rhombic symmetry. EPR studies on frozen solutions of the CuII complex show the presence of a CuII‐CuII dimer which is the first observed for CuII acylthioureato complexes up to now. The parameters of the fine structure tensor were used for the estimation of the CuII‐CuII distance.  相似文献   

10.
A novel one‐dimensional CuII coordination polymer, catena‐poly[bis(μ4‐3‐{[2‐(3‐hydroxy‐2‐oxidobenzylidene)hydrazinylidene]methyl}benzene‐1,2‐diolato)dimethanoltricopper(II)], [Cu3(C14H10N2O4)2(CH3OH)2]n, (I), was constructed with a di‐Schiff base supported centrosymmetric trinuclear CuII subunit. In the subunit, two peripheral symmetry‐related CuII cations have square‐pyramidal CuNO4 geometry and the central third CuII cation lies on an inversion centre with octahedral CuN2O4 geometry. In (I), each partially deprotonated di‐Schiff base 3‐{[2‐(3‐hydroxy‐2‐oxidobenzylidene)hydrazinylidene]methyl}benzene‐1,2‐diolate ligand (Hbcaz3−) acts as a heptadentate ligand to bind the CuII centres into chains along the a axis. A centrosymmetric Cu2O2 unit containing an asymmetrically bridging O atom, being axial at one Cu atom and equatorial at the other Cu atom, links the trinuclear CuII subunit into a one‐dimensional chain, which is reinforced by intramolecular phenol–methanol O—H...O and methanol–phenolate O—H...O hydrogen bonds. Interchain π–π stacking interactions between pyrocatechol units, with a distance of 3.5251 (18) Å, contribute to the stability of the crystal packing.  相似文献   

11.
The bis(ethylene) IrI complex [TpIr(C2H4)2] ( 1 ; Tp=hydrotris(3,5‐dimethylpyrazolyl)borate) reacts with two equivalents of aromatic or aliphatic aldehydes in the presence of one equivalent of dimethyl acetylenedicarboxylate (DMAD) with ultimate formation of hydride iridafurans of the formula [TpIr(H){C(R1)?C(R2)C(R3)O }] (R1=R2=CO2Me; R3=alkyl, aryl; 3 ). Several intermediates have been observed in the course of the reaction. It is proposed that the key step of metallacycle formation is a C? C coupling process in the undetected IrI species [TpIr{η1O‐R3C(?O)H}(DMAD)] ( A ) to give the trigonal‐bipyramidal 16 e? IrIII intermediates [TpIr{C(CO2Me)?C(CO2Me)C(R3)(H)O }] ( C ), which have been trapped by NCMe to afford the adducts 11 (R3=Ar). If a second aldehyde acts as the trapping reagent for these species, this ligand acts as a shuttle in transfering a hydrogen atom from the γ‐ to the α‐carbon atom of the iridacycle through the formation of an alkoxide group. Methyl propiolate (MP) can be used instead of DMAD to regioselectively afford the related iridafurans. These reactions have also been studied by DFT calculations.  相似文献   

12.
Chiral ligand (A)‐N,N′‐Bis(2‐hydroxy‐3,5‐di‐tert‐butyl‐arylmethyl)‐1,1′‐binaphthalene‐2,2′‐diamine derived from the reduction of Schiff base (R)‐2,2′‐bis (3,5‐di‐tert‐butyl‐2‐hydroxybenzylideneamino)‐1, 1′‐binaphthyl with LiAlH4, is fairly effective in the asymmetric addition reaction of diethylzinc to aldehydes by which good yields (46%‐94%) of the corresponding sec‐alcohols can be obtained in moderate ee (51%‐79%) with R configuration for a variety of aldehydes.  相似文献   

13.
Three diplatinum(II) complexes [{PtL}2(μ‐thea)] (H4thea=2,3,6,7‐tetrahydroxy‐9,10‐dimethyl‐9,10‐dihydro‐9,10‐ethanoanthracene) have been prepared, with diphosphine or bipyridyl “L” co‐ligands. One‐electron oxidation of these complexes gave radical cations containing a mixed‐valent [thea]3? ligand with discrete catecholate and semiquinonate centers separated by quaternary methylene spacers. The electronic character of these radicals is near the Robin–Day class II/III border determined by UV/Vis/NIR and EPR spectroscopies. Crystal‐structure determinations and a DFT calculation imply that oxidation of the thea4? ligand may lead to an increased through‐space interaction between the dioxolene π systems.  相似文献   

14.
A series of mononuclear complexes of the type, [MLCl2] [M = CoII, NiII, CuII, and ZnII] with a pyrimidene‐type ligand, which was synthesized by the reaction of 2‐furaldehyde and 1, 8‐diaminonaphthalene, was obtained. The ligand and its complexes were characterized by elemental analysis, IR, NMR, EPR, and UV/Vis spectroscopy, ESI‐mass spectrometry, magnetic susceptibility, molar conductivity, and thermogravimetric analyses. On the basis of UV/Vis spectroscopic and magnetic susceptibility data, an octahedral arrangement was assigned around all metal ions. The low molar conductivity data for all the complexes show their non‐electrolytic nature. The thermal behavior of the complexes was studied by TGA analyses. The electrochemical study carried out on the CuII complex exhibits a quasi reversible redox process. The ligand and its complexes showed potential antioxidant and antimicrobial activities.  相似文献   

15.
The combination of cobalt, 3,5‐di‐tert‐butyldioxolene (3,5‐dbdiox) and 1‐hydroxy‐1,2,4,5‐tetrakis(pyridin‐4‐yl)cyclohexane (tpch) yields two coordination polymers with different connectivities, i.e. a one‐dimensional zigzag chain and a two‐dimensional sheet. Poly[[bis(3,5‐di‐tert‐butylbenzene‐1,2‐diolato)bis(1,5‐di‐tert‐butyl‐4‐oxocyclohexa‐2,5‐dien‐1‐yl‐3‐olato)[μ4‐1‐hydroxy‐1,2,4,5‐tetrakis(pyridin‐4‐yl)cyclohexane]cobalt(III)]–ethanol–water 1/7/5], {[Co2(C14H20O2)4(C26H24N4O)]·7C2H5OH·5H2O}n or {[Co2(3,5‐dbdiox)4(tpch)}·7EtOH·5H2O}n, is the second structurally characterized example of a two‐dimensional coordination polymer based on linked {Co(3,5‐dbdiox)2} units. Variable‐temperature single‐crystal X‐ray diffraction studies suggest that catena‐poly[[[(3,5‐di‐tert‐butylbenzene‐1,2‐diolato)(1,5‐di‐tert‐butyl‐4‐oxocyclohexa‐2,5‐dien‐1‐yl‐3‐olato)cobalt(III)]‐μ‐1‐hydroxy‐1,2,4,5‐tetrakis(pyridin‐4‐yl)cyclohexane]–ethanol–water (1/1/5)], {[Co(C14H20O2)2(C26H24N4O)]·C2H5OH·5H2O}n or {[Co(3,5‐dbdiox)2(tpch)]·EtOH·5H2O}n, undergoes a temperature‐induced valence tautomeric interconversion.  相似文献   

16.
The protonation and ZnII/CuII complexation constants of tripodal polyamine ligand N1‐(2‐aminoethyl)‐N1‐(1H‐imidazol‐4‐ylmethyl)‐ethane‐1,2‐diamine (HL) were determined by potentiometric titration. Three new compounds, i.e. [H3(HL)](ClO4)3 ( 5 ), [Zn(HL)Cl](ClO4) ( 6 ) and {[Zn(L)](ClO4)}n ( 7 ) were obtained by reactions of HL · 4HCl with Zn(ClO4)2 · 6H2O under different reaction pH, and they were compared with the corresponding CuII complexes reported previously. The results indicate that the reaction pH and metal ions have remarkable influence on the formation and structure of the complexes.  相似文献   

17.
Using the L ‐generalized Laguerre polynomials L ‐GLPs) and φ ‐generalized exponential type orbitals φ ‐GETOs) introduced by the author in standard convention, the one‐ and two‐center onerange addition theorems are established for the complete sets of Ψ(α*) ‐modified exponential type orbitals (Ψ(α*) ‐METOs) and noninteger n χ‐Slater type orbitals (χ‐NISTOs), where pl* = 2l + 2 ‐ α* and α* is the integer (α* = α, ?∞ < α ≤2) or noninteger (α* ≠ α, ?∞ < α* < 3) self‐frictional quantum number. It should be noted that the origin of the L ‐GLPs, φ ‐GETOs and Ψ(α*) ‐METOs, therefore, of the one‐range addition theorems presented in this work is the Lorentz damping or self‐frictional field produced by the particle itself.  相似文献   

18.
The study reports the synthesis of complexes Co(HL)Cl2 ( 1 ), Ni(HL)Cl2 ( 2 ), Cu(HL)Cl2 ( 3 ), and Zn(HL)3Cl2 ( 4 ) with the title ligand, 5‐(pyrazin‐2‐yl)‐1,2,4‐triazole‐5‐thione (HL), and their characterization by elemental analyses, ESI‐MS (m/z), FT‐IR and UV/Vis spectroscopy, as well as EPR in the case of the CuII complex. The comparative analysis of IR spectra of the metal ion complexes with HL and HL alone indicated that the metal ions in 1 , 2 , and 3 are chelated by two nitrogen atoms, N(4) of pyrazine and N(5) of triazole in the thiol tautomeric form, whereas the ZnII ion in 4 is coordinated by the non‐protonated N(2) nitrogen atom of triazole in the thione form. pH potentiometry and UV/Vis spectroscopy were used to examine CoII, NiII, and ZnII complexes in 10/90 (v/v) DMSO/water solution, whereas the CuII complex was examined in 40/60 (v/v) DMSO/water solution. Monodeprotonation of the thione triazole in solution enables the formation of the L:M = 1:1 species with CoII, NiII and ZnII, the 2:1 species with CoII and ZnII, and the 3:1 species with ZnII. A distorted tetrahedral arrangement of the CuII complex was suggested on the basis of EPR and Vis/NIR spectra.  相似文献   

19.
Reaction of the tin cluster Sn8(Ar)4 (Ar=C6H2‐2,6‐(C6H3‐2,4,6‐Me3)2) with excess ethylene or dihydrogen at 25 °C/1 atmosphere yielded two new clusters that incorporated ethylene or hydrogen. The reaction with ethylene yielded Sn4(Ar)4(C2H2)5 that contained five ethylene moieties bridging four aryl substituted tin atoms and one tin–tin bond. Reaction with H2 produced a cyclic tin species of formula (Sn(H)Ar)4, which could also be synthesized by the reaction of {(Ar)Sn(μ‐Cl)}2 with DIBAL‐H. These reactions represent the first instances of direct reactions of isolable main‐group clusters with ethylene or hydrogen under mild conditions. The products were characterized in the solid state by X‐ray diffraction and IR spectroscopy and in solution by multinuclear NMR and UV/Vis spectroscopies. Density functional theory calculations were performed to explain the reactivity of the cluster.  相似文献   

20.
Complexes of titanium(IV) with bulky phenolic ligands such as 2‐tert‐butyl‐4 methylphenol, 2, 4‐di‐tert‐butyl phenol and 3,5‐di‐tert‐butyl phenol were prepared and characterized. These catalyst precursors, formulated as [Ti(OPh*)n(OPri)4?n] (OPh* = substituted phenol), were found to be active in polymerization of ethylene at higher temperatures in combination with ethylaluminum sesquichloride (Et3Al2Cl3) as co‐catalyst. It was observed that the reaction temperature and ethylene pressure had a pronounced effect on polymerization and the molecular weight of polyethylene obtained. In addition, this catalytic system predominantly produced linear, crystalline ultra‐low‐molecular‐weight polyethylenes narrow dispersities. The polyethylene waxes obtained with this catalytic system exhibit unique properties that have potential applications in surface coating and adhesive formulations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号