首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proton radioactivity hMf-lives of spherical proton emitters are calculated by the cluster model with the con- tribution of a centrifugal potential barrier considered separately. The results are compared with the experimental data and other theoretical data, and good agreement is found for most nuclei. In addition, two formulae are pro- posed for the proton decay half-life of spherical proton emitters through the least squares fit to the experimental data available, and could reproduce the experimental half-lives successfully.  相似文献   

2.
Half-lives of the proton radioactivity for spherical proton emitters are investigated theoretically in the Wentzel- Kramers-Brillouin approximation. Microscopic proton-nucleus interaction potentials are obtained by folding the densities of the residual daughter nuclei with renormalized M3Y effective interactions. We also take the spectroscopic factor (Sp) into account in the calculation, which is evaluated in the relativistic mean field approach using the force NL3. The calculated results are found to be in good agreement with the experimental data.  相似文献   

3.
The α-decay half-lives of a set of superheavy nuclear isotope chain from Z = 105 to 120 have been analyzed systematically within the WKB method, and some nuclear structure features are found. The decay barriers have been determined in the quasi-molecular shape path within the Generalized Liquid Drop Model (GLDM) including the proximity effects between nucleons in a neck and the mass and charge asymmetry. The results are in reasonable agreement with the published experimental data for the alpha decay half-lives of isotopes of charge 112, 114, and 116, of the element 294118 and of some decay products. A comparison of present calculations with the results by the DDM3Y effective interaction and by the Viola-Seaborg-Sobiczewski (VSS) formulae is also made. The experimental α decay half lives all stand in between the GLDM calculations and VSS formula results. This demonstrates the possibility of these models to provide reasonable estimates for the half-lives of nuclear decays by α emissions for the domain of SHN. The half-lives of these new nuclei are thus well tested from the reasonable consistence of the macroscopic, the microscopic, the empirical formulae and the experimental data. This also shows that the present data of SHN themselves are consistent.It could suggest that the present experimental claims on the existence of new elements Z = 110 ~ 118 are reliable.It is expected that greater deviations of a few SHN between the data and the model may be eliminated by further improvements on the precision of the measurements.  相似文献   

4.
Systematic Study on Alpha Decay Half-Lives of Superheavy Nuclei   总被引:1,自引:0,他引:1  
The α-decay half-lives of a set of superheavy nuclear isotope chain from Z = 105 to 120 have been analyzed systematically within the WKB method, and some nuclear structure features are found. The decay barriers have been determined in the quasi-molecular shape path within the Generalized Liquid Drop Model (GLDM) including the proximity effects between nucleons in a neck and the mass and charge asymmetry. The results are in reasonable agreement with the published experimental data for the alpha decay half-llves of isotopes of charge 112, 114, and 116, of the element 294118 and of some decay products. A comparison of present calculations with the results by the DDM3Y effective interaction and by the Viola-Seaborg-Sobiczewski (VSS) formulae is also made. The experimental a decay half lives all stand in between the GLDM calculations and VSS formula results. This demonstrates the possibility of these models to provide reasonable estimates for the half-lives of nuclear decays by a emissions for the domain of SHN. The half-lives of these new nuclei are thus well tested from the reasonable consistence of the macroscopic, the microscopic, the empirical formulae and the experimental data. This also shows that the present data of SHN themselves are consistent. It could suggest that the present experimental claims on the existence of new elements Z =110 - 118 are reliable. It is expected that greater deviations of a few SHN between the data and the model may be eliminated by further improvements on the precision of the measurements.  相似文献   

5.
4He (i.e., α particle) and 6He emissions from possible molecular states in beryllium and carbon isotopes have been investigated using a mean-field-type cluster potential. Calculations can reasonably describe the α-decay widths of studied states in beryllium and carbon isotopes, and also 20Ne, compared with experiments. For the nucleus 10Be, we discussed α-decay widths with different shapes or different decay modes, in order to understand the very different decay widths of two excited states. The widths of 6He decays from 12Be and α decays from 13,14C are predicted, which could be useful for future experiments.  相似文献   

6.
The generalized liquid drop model (GLDM) is extended to the region around deformed shell closure ^270Hs by taking into account the excitation energy EI+ of the residual daughter nucleus and the centrifugal potential energy Vcen(r). The branching ratios of a decays from the ground state of a parent nucleus to the ground state 0^+ of its deformed daughter nucleus and to the first excited state 2^+ are calculated in the framework of the GLDM. The results support the proposal that a measurement of a spectroscopy is a feasible method to extract information on nuclear deformation of superheavy nuclei around the deformed nucleus ^270Hs.  相似文献   

7.
8.
The systematics for binding energies per α-particle in N = Z nuclei, E /N α, are studied up to 164Pb. It is shown that, although a geometrical model can be used to explain the systematics for light nuclei, the binding energy per α-particle exhibits structures which are due to the well-known shells of the mean field of nucleons in nuclei. The overall dependence of E /N α on N α in N = Z nuclei (for the ground-state masses) can be described in a liquid-drop model of α-particles. Conditions for a phase change with the formation of an α-particle condensate, a dilute Bose gas in excited compound nuclei are discussed for E /N α = 0, at the thresholds. This is achieved when the binding energy per nucleon in nuclei is equal to or smaller than in the α-cluster. At somewhat smaller excitation energies the appearance of a Bose gas with a closed-shell core (N = Z, e.g. of 40Ca) is proposed within the same concept. The experimental observation of the decay of such condensed α-particle states is proposed with the coherent emission of several correlated α-particles not described by the Hauser-Feshbach approach for compound-nucleus decay. This decay will be observed by the emission of unbound resonances in the form of 8Be and 12C * (0+ 2) clusters.  相似文献   

9.
The properties of the Z = 117 isotopic chain are studied within the framework of the axially deformed relativistic mean field theory (RMFT) in the blocked BCS approximation. The ground-state properties, such as hinging energies, deformations as well as the possible α decay energies and lifetimes are calculated with the parameter set of NL-Z2 and compared with results from the finite range droplet model. The analysis by RMFT shows that the isotopes in the range of mass number A =291 ~ 300 exhibit higher stability, which suggests that they may be promising nuclei to be hopefully synthesized in the lab among the nuclei Z = 117.  相似文献   

10.
Theα decay constant is the product of the penetrability P and assault frequency vo in the fission-like model. An effective assault frequency Pv replacing the previous assault frequency uo is introduced for improvement of a fission-like model named the generalized liquid drop model (GLDM) to describe the nuclear α decay process more accurately. Two analytical formulae are proposed for the effective assault frequency due to experimental data within the GLDM. The improved model can be used to give accurate calculations for α decay half-lives.  相似文献   

11.
We study various $\alpha $ -decay chains on the basis of the preformed cluster decay model. Our work targets the superheavy elements, which are expected to show extra stability at shell closure. Our computations identify the following combinations of proton and neutron numbers as the most stable nuclei: $Z=112$ , $N=161, 163$ ; $Z=114$ , $N=171, 178, 179$ ; and $Z=124$ , $N=194$ . We also investigate the alternative of heavy cluster emissions in the decay chain of 301120, instead of $\alpha $ decay. Our study of cluster radioactivity shows that the half-life for 10Be decay in 289114 is larger, indicating enhanced stability at $Z=114$ , $N=175$ . Similar calculations concerning the emission of $\ ^{14}{\rm C}$ and $\ ^{34}{\rm Si}$ from 301120 find the more stable combinations $Z=114$ , $N=173$ , and $Z=106$ , $N=161$ , respectively. From the same parent, 301120, the emission of a $\ ^{49-51}{\rm Ca}$ cluster yielding a $Z=100$ , $N=152$ daughter is the most probable.  相似文献   

12.
The level structures populated in alpha decay of all odd-Z-even-N nuclei withZ=(83–93) andN=(126–142) up to 500 keV are presented. More data on the 4n+3 nuclear sequences are given from215Bi to235Np. Particular emphasis is placed on the hindrance factors to alpha decay in interpreting the level structures in term of the shell model, the octupole-quadrupole model and the Nilsson model. The level structures and the hindrance factors go through transition region in which mixtures of the properties of two different nuclear models are appropriate. These transition regions represent a challenge to nuclear theorists to develop more all-encompassing nuclear models.  相似文献   

13.
The level scheme of 212Rn has been extended to spins of ∼38?38? and excitation energies of about 13 MeV using the 204Hg(13C, 5n)212Rn reaction and γ-ray spectroscopy. Time correlated techniques have been used to obtain sensitivity to weak transitions and channel selectivity. The excitation energy of the 22+ core-excited isomer has been established at 6174 keV. Two isomers with τ=25(2) nsτ=25(2) ns and τ=12(2) nsτ=12(2) ns are identified at 12211 and 12548 keV, respectively. These are the highest-spin nuclear isomers now known, and are attributed to configurations involving triple neutron core-excitations coupled to the aligned valence protons. Semi-empirical shell-model calculations can account for most states observed, but with significant energy discrepancies for some configurations.  相似文献   

14.
Halo structures of some light mirror nuclei are investigated with the relativistic mean field (RMF) theory. The calculations show that the dispersion of the valence proton is larger than that of the valence neutron in its mirror nucleus, the difference between the root-mean-square (rms) radius of the valence nucleon in each pair of mirror nuclei becomes smaller with the increase of the mass number A, and all the ratios of the rms radius of the valence nucleon to that of the matter in each pair of mirror nuclei decrease almost linearly with the increase of the mass number A.  相似文献   

15.
16.
In a series of experiments performed at the velocity filter SHIP, new or improved decay data of neutron-deficient isotopes of elements from mendelevium (Z = 101) to hassium (Z = 108) were obtained. In particular, evidence for -decay or electron capture from isomeric states in 265Hs and 258Db was found.  相似文献   

17.
Neutron-deficient nuclei in the mass region A≈ 90-100 exhibit a large variety of phenomena. In this region the heaviest N = Z nuclei are identified and enhanced neutron-proton correlations are expected when protons and neutrons occupy identical orbitals. A variety of nuclear shapes are predicted and observed for A? 91, including superdeformed shapes. The nucleus 100Sn is the heaviest N = Z doubly magic nucleus believed to be bound. Knowledge of the shell structure around 100Sn is of utmost importance for understanding the nuclear shell model. New results on both the N = Z nucleus 88Ru, superdeformed structures in A≈ 90 nuclei as well as the first result on the level structure in 103Sn, and an extended level structure in 102In are presented. The limitations of using stable beams and targets and the possibilities with new radioactive beams are briefly outlined. Received: 1 May 2001 / Accepted: 4 December 2001  相似文献   

18.
Physics of Atomic Nuclei - The probabilities for L-shell ionization following the alpha decay of 117 294 Ts, 113 286 Nh, 109 278 Mt, and 105 270 Db superheavy nuclei from the decay chain of...  相似文献   

19.
Properties of the lowest 0+ states of 12C are calculated to study the role of three-body interactions in the α-cluster model. An additional short-range part of the local three-body potential is introduced to incorporate the effects beyond the α-cluster model. There is enough freedom in this potential to reproduce the experimental values of the ground-state and excited-state energies and the ground-state root-mean-square radius. The calculations reveal two principal choices of the two-body and three-body potentials. Firstly, one can adjust the potentials to obtain the width of the excited 02+ state and the monopole 02+↦01+ transition matrix element in good agreement with the experimental data. In this case, the three-body potential has strong short-range attraction supporting a narrow resonance above the 02+ state, the excited-state wave function contains a significant short-range component, and the excited-state root-mean-square radius is comparable to that of the ground state. Next, rejecting the solutions with an additional narrow resonance, one finds that the excited-state width and the monopole transition matrix element are insensitive to the choice of the potentials and both values exceed the experimental ones.  相似文献   

20.
In this contribution I would like to review briefly our recent studies on nuclear α formation probabilities in heavy nuclei and their indication on the underlying structure of the nuclei involved. In particular, I will show that the empirical α-formation probabilities, which can be extracted from experimental half-lives, exhibit a rather smooth function with changing proton or neutron numbers. This allows us to distinguish the role played by pairing collectivity in the clustering process. The sudden hindrance of the clustering of the nucleons around the N = 126 shell closure is due to the fact that the configuration space does not allow a proper manifestation of the pairing collectivity. The influence of the Z = 82 shell closure on the α formation properties will also be discussed. Moreover, we have evaluated the α-decay fine structure to excited 0+ states in Hg and Rn isotopes as well as the α-decay from the excited 0+ states in the mother nucleus. It is thus found that the α decay is sensitive to the mixture of configurations corresponding to different nuclear shapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号