首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 512 毫秒
1.
Tridentate chelate complexes M[LX?·?2H2O], where M?=?Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) have been synthesized from the Schiff base L?=?N-[1-(3-aminopropyl)imidazole]salicylaldimine and X?=?Cl. Microanalytical data, UV-Vis, magnetic susceptibility, IR, 1H-NMR, mass, and EPR techniques were used to confirm the structures. Electronic absorption spectra and magnetic susceptibility measurements suggest square-planar geometry for copper complex and octahedral for other metal complexes. EPR spectra of copper(II) complex recorded at 300?K confirm the distorted square-planar geometry of the copper(II) complex. Biological activities of the ligand and metal complexes have been studied on Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans by the well diffusion method. The activity data show the metal complexes to be more potent than the parent ligand against two bacterial species and one fungus. The electrochemical behavior of the copper complex was studied by cyclic voltammetry.  相似文献   

2.
A series of new Co(II), Ni(II), and Cu(II) complexes of Schiff base derived from coumarin have been prepared and characterized by analytical and spectral methods. The Schiff base is synthesized by the condensation of 2,6-diaminopyridine and 3-acetylcoumarin in 1 : 1 stoichiometric ratio. All complexes have 1 : 1 metal : ligand ratio except the nickel complex, where it was found to be 1 : 2. UV-Vis spectra and magnetic moment studies confirm the existence of tetrahedral and octahedral geometries around cobalt(II) and nickel(II) metal ions, respectively, but copper(II) chloride/nitrate/sulfate complexes have square-planar geometry and copper(II) acetate complex is distorted octahedral. ESR spectra of copper complexes at room temperature and liquid nitrogen temperature were tetragonal. All the complexes were found to be more active against bacteria except Ni(II) complex; only CuLSO4 and CuL(CH3COO)2 have shown the enhanced activity against fungi.  相似文献   

3.
Summary Two new Schiff bases, N-4-hydroxysalicylidene-glycylglycine (K·GGRS·H2O), N-O-vanillal-glycylglycine (K· GGVS·3H2O) and their manganese(II), cobalt(II), nickel(II) and copper(II) complexes have been synthesized and characterized by elemental analysis, t.g.a., molar conductance, i.r. and u.v. spectral studies. The 13Cn.m.r. spectrum of one of the Schiff base ligands has been recorded. The results show that the ligand is coordinated to the central metal ion via amide nitrogen, imino nitrogen, phenolic oxygen and carboxyl oxygen to form a quadridentate complexes. Some of the complexes exhibit strong inhibitory action towards Candida albicans and Cryptococcus neoformans.  相似文献   

4.
The reactions of 2,5-diformylpyrrole (1) and 2,6-diformylpyridine (2) with propane-1,3-diamine afforded new macrocyclic Schiff"s bases 5 and 6, respectively. Their structures were established by NMR spectroscopy and mass spectrometry. Binuclear copper(ii) and nickel(ii) complexes with ligand 5 were synthesized. Pentadentate Schiff"s base, viz., 2,6-bis[(2-aminophenylimino)methyl]pyridine, was prepared by demetallation of its complex with Cd(ClO4)2 using Na2S. In solutions, the latter Schiff"s base is quantitatively transformed into 2,6-bis(benzoimidazolyl)pyridine under the action of atmospheric oxygen or other mild oxidizing agents.  相似文献   

5.
《中国化学会会志》2017,64(12):1510-1523
A heterocyclic Schiff base was prepared by condensing 3‐acetylcoumarin with 2‐amino‐3‐carboxyethyl‐4,5,6,7‐tetrahydrobenzo[b ]thiophene. Such Schiff bases derived from two different heterocyclic moieties are rare and expected to have properties surpassing those of either of the parent compounds in effectiveness of complex formation and biological activities. This ligand formed a series of complexes with manganese(II), cobalt(II), nickel(II), copper(II), and zinc(II) ions. The ligand and the metal complexes were characterized by various physicochemical and spectral studies. These included elemental analysis, molar conductance, magnetic susceptibility, as well as UV–vis, IR, 1H NMR, 13C NMR, and ESR spectral studies. The ESR spectral data adequately supported the covalent nature of the metal–ligand bonds. The ligand possessed a hexagonal crystal structure, but on complexation the crystallinity was lost. The fluorescence spectra of the ligand and its metal complexes in DMSO were also recorded. The ligand and the metal complexes were screened for their antimicrobial activities, and it was observed that the metal complexes are more active than the ligand. The α‐amylase inhibitory activity and the DNA cleavage activity of the ligand and the metal complexes were also examined. in vitro antitumor activity of the copper(II) complex was assayed against human cervical carcinoma cells (HeLa cell line), showing that the complex exhibited promising antitumor activity on the HeLa cell line.  相似文献   

6.
Summary Schiff base [2 + 2] condensation of p-phthalaldehyde with the triamine 1,7-diamino-4-azaheptane followed by reduction with NaBH4 gives a 30-membered hexa-aza macrocyclic ligand. A series of binuclear copper(II), nickel(II) and zinc(II) complexes have been prepared and characterized, 1H-n.m.r., u.v.-vis. and i.r. measurements are reported with associated magnetic and electrochemical studies.Author to whom all correspondence should be directed.  相似文献   

7.
A new, simple Cu2+ nano‐structure Schiff base complex in methanol medium has been synthesized by the ultrasonic method. Structure of the compound was confirmed by FT‐IR, GC‐Mass and other spectroscopic techniques. The copper oxide (CuO) was achieved from the copper nano‐structure Schiff base complex as the raw material after calcination for 3 hr at 600 °C. According to results Cu2+ gives a complex with mole ratio 1:2 of metal to ligand (ML2) with Schiff base which a distorted square planer is the most probable geometry for it. The calculations results from XRD patterns propose the nano‐sized complexes. The SEM images show morphology of both the copper complex and the CuO powder were plate‐like. The metal chelates of Cu2+ in two states of bulk and nano have been screened for their in vitro antibacterial activity against four bacteria, gram‐positive (Staphylococcus aureus) and gram‐negative (Escherichia coli) and three strains of fungus (Aspergillus flavus). The nano metal chelates were shown to possess more antibacterial activity than the bulk chelate. Finally, the empirical parameters of Schiff base compounds showed a good agreement with theoretical ones.  相似文献   

8.
A novel macrocyclic Schiff base ligand (2,5,9,12,14,18-hexaoxo-7,16-dithia-1,3,4,10,11,13-hexaazacycloocta-decane (H6L) with N4S2 coordinating sites was prepared by the reaction of the semicarbazide and thiodiglycolic acid. The transition metal complexes with macrocyclic ligand were synthesized and characterized by elemental analyses, magnetic susceptibility measurements, molar conductance, IR, electronic, and EPR spectral studies. Mass, 1H NMR and IR spectral techniques suggest the structural features of macrocyclic ligand. Magnetic and electronic spectral studies suggest an octahedral geometry of complexes. Electrochemical behaviour of cobalt, nickel and copper complexes were determined by cyclic voltammetry. The cyclic voltammogram of the copper complex at room temperature shows a quasi-reversible peaks for Cu(III)-->Cu(II) and Cu(II)-->Cu(I) couples. The macrocyclic ligand and its complexes show growth inhibitory activity against pathogenic bacteria and plant pathogenic fungi A. niger, A. alternata and P. variotii. Most of the complexes have higher activities than that of free ligand.  相似文献   

9.
The binucleating ligand LH3, 2,6-diformyl-p-cresol-bis(phenylthioacetyldrazone), a Schiff base condensation product of 2,6-diformyl-p-cresol and phenylthioacetyldrazide forms complexes of the [M2ClL] type with CoII, NiII and CuII ions, which were characterized by elemental analysis, magnetic susceptibility, electronic spectra, molar conductance, i.r., n.m.r., e.p.r., t.g. and FAB mass spectral measurements. Sub-normal magnetic moments indicate the operation of antiferromagnetic coupling between the metal centres. The ligand and its copper complex show a pronounced fungistatic activity.  相似文献   

10.
A new series of transition-metal complexes of Schiff base ligand containing the amino mercapto triazole moiety ( HL ) was prepared. The Schiff base and its metal complexes were elucidated by different spectroscopic techniques (infrared [IR], 1H nuclear magnetic resonance, UV–Visible, mass, and electron spin resonance [ESR]), and magnetic moment and thermal studies. Quantum chemical calculations have been carried out to study the structure of the ligand and some of its complexes. The IR spectra showed that the ligand is chelated with the metal ion in a neutral, tridentate, and bidentate manner using NOS and NO donors in complexes 1 – 6 , 10–12 , and 7 and 8 , respectively, whereas it behaves in a monobasic tridentate fashion using NOS donor sites in copper(II) nitrate complex ( 9 ). The magnetic moment and electronic spectra data revealed octahedral and square pyramidal geometries for complexes 2 , 11 , 12 , and 5 – 8 and 10 , respectively. However, the other complexes were found to have tetrahedral ( 4 ), trigonal bipyramidal ( 1 and 3 ), and square planar ( 9 ) structures. Thermal studies revealed that the chelates with different crystallized solvents undergo different types of interactions and the decomposition pathway ended with the formation of metal oxygen (MO) and metal sulfur (MS) as final products. The ESR spectrum of copper(II) complex 10 is axial in nature with hyperfine splitting with 2B1g as a ground state. By contrast, complexes 7 and 8 undergo distortion around the Cu(II) center, affording rhombic ESR spectra. The HL ligand and some of its complexes were screened against two bacterial species. Data showed that complex 12 demonstrated a better antibacterial activity than HL ligand and other chelates.  相似文献   

11.
Three new metal complexes [Cu(L)2] (1), [Co(L)2] (2) and [Zn(L)2] (3) have been prepared by the reaction of hydrated salts of metal (II) acetate with new Schiff base ligand HL, [2‐((4‐(dimethylamino)phenylimino)methyl)‐4,6‐di‐t‐butylphenol] and characterized by different physico‐chemical analyses such as elemental analysis, single XRD, 1H NMR, FTIR and UV–Vis spectroscopic techniques. Their biomolecular docking, antimicrobial and cytotoxicity studies have also been demonstrated. The proposed structure of Schiff base ligand HL and complex 2 are confirmed by Single crystal X‐ray crystallography study. This analysis revealed that metal (II) complexes remain in distorted tetrahedral coordination environments. The electronic properties such as HOMO and LUMO energies are carried out by gaseous phase DFT/B3LYP calculations using Gaussian 09 program. Complex 1 showed a good binding propensity to the DNA and HSA, during the assessment of docking studies. Schiff base ligand HL and its metal (II) complexes, 1–3 screened for their in vitro antimicrobial activities using the disc diffusion method against selected microbes. Complex 1 shows higher antimicrobial activity than complexes 2, 3 and Schiff base ligand HL. According to the results obtained from the cytotoxic studies, Schiff base ligand HL and its metal (II) complexes 1–3 have better cytotoxicity against MCF‐7 cell lines with potency higher than the currently used chemotherapeutic agent cyclophosphamide.  相似文献   

12.
Series of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes were prepared with tetradentate Schiff base ligand derived by condensation of 2‐aminophenol with dibenzoylmethane. The novel Schiff base H2L (2–2′‐((1Z,1Z’)‐(1,3‐diphenyl propane‐1,3 diylidene) bis (azanylylidene) diphenol) and its binary metal complexes were characterized by physicochemical procedures i.e. elemental analysis, FT‐IR, UV–Vis, thermal analyses (TGA/DTG), mass spectrometry, magnetic susceptibility and conductometric measurements. On the basis of these studies, an octahedral geometry for all these complexes was proposed expect Ni(II) complex which had tetrahedral geometry. Molar conductivity values revealed that the complexes were electrolytes except Mn(II), Zn(II) and Cd(II) complexes were non electrolytes. The ligand bound to the metal ions via two azomethine N and two phenolic OH as indicated from the IR and 1H NMR spectral study. The molecular and electronic structures of H2L and its zinc complex were optimized theoretically and the quantum chemical parameters were calculated. The antimicrobial activity against a number of bacterial organisms as Streptococcus pneumonia, Bacillus Subtilis, Pseudomonas aeruginosa and Escherichia coli and fungi as Aspergillus fumigates, Syncephalastrum racemosum, Geotricum candidum and Candida albicans by disk diffusion method were screened for the Schiff base and its complexes. The Cd(II) complex has potent antimicrobial activity. Anticancer activity of the Schiff base ligand and its metal complexes were evaluated in human cancer (MCF‐7 cells viability). The Cr(III) complex exhibited higher activity than other complexes and ligand. Molecular docking was used to predict the binding between Schiff base ligand (H2L) and its Zn(II) complex and the receptors of RNA of amikacin antibiotic (4P20) and human‐DNA‐Topo I complex (1SC7). The docking study provided useful structural information for inhibition studies.  相似文献   

13.
New cobalt(II), copper(II) and zinc(II) complexes of Schiff base derived from D,L ‐selenomethionine and salicylaldehyde were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements and biological activity. The analytical data showed that the Schiff base ligand acts as tridentate towards divalent metal ions (cobalt, copper, zinc) via the azomethine‐N, carboxylate oxygen and phenolato oxygen by a stoichiometric reaction of M:L (1:1) to form metal complexes [ML(H2O)], where L is the Schiff base ligand derived from D,L ‐selenomethionine and salicylaldehyde and M = Co(II), Cu(II) and Zn(II). 1H NMR spectral data of the ligand and Zn(II) complex agree with proposed structures. The conductivity values between 12.87 and 15.63 S cm2 mol?1 in DMF imply the presence of non‐electrolyte species. Antibacterial and antifungal results indicate that the metal complexes are more active than the ligand. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
We describe the synthesis and characterization of a new tetradentate Schiff base ligand obtained from 2,3-diaminopyridine and 5-methoxysalicylaldehyde. This ligand (H2L) reacted with nickel(II), copper(II), and zinc(II) acetates to give complexes. The ligand and its metal complexes were characterized using analytical, spectral data (UV–vis, IR, and mass spectroscopy), and cyclic voltammetry (CV). The crystal structure of the copper complex was elucidated by X-ray diffraction studies. The electrochemical behavior of these compounds, using CV, revealed that metal centers were distinguished by their intrinsic redox systems, e.g. Ni(II)/Ni(I), Cu(II)/Cu(I), and Zn(II)/Zn(I). Moreover, the electrocatalytic reactions of Ni(II) and Cu(II) complexes catalyze the oxidation of methanol and benzylic alcohol.  相似文献   

15.
[2 + 2] Condensation between 3,4-diaminobenzophenone and benzil in a 1:1 molar ratio in methanol at room temperature resulted in the formation of a novel Schiff base tetraimine macrocyclic ligand, (L): 5,6;11,12-dibenzophenone-2,3;8,9-tetraphenyl-1,4,7,10-tetraazacyclo-dodeca-1,3,7,9-tetraene. The macrocyclic complexes of the type, [FeLCl2]Cl and [MLCl2] [M = Co(II) and Cu(II)] have been prepared by reacting iron(III) chloride or metal(II) chlorides with the ligand, L in 1:1 molar ratio in methanol. The stoichiometry corresponding to the formation of the ligand framework, L was ascertained on the basis of results of elemental analyses,1H-NMR and FAB-mass measurements while that of complexes were ascertained by results of elemental analyses and in solution by Job’s method. The mode of bonding and the geometry of the complexes have been confirmed on the basis of i.r., u.v.–vis spectral findings and magnetic susceptibility measurements which revealed an octahedral geometry for all the complexes. The nature of the complexes was confirmed by conductometric studies.  相似文献   

16.
Novel zinc(II), copper(II), and cobalt(II) complexes of the Schiff base derived from 2‐hydroxy‐1‐naphthaldehyde and D, L ‐selenomethionine were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements and powder XRD. The analytical data showed the composition of the metal complex to be ML(H2O), where L is the Schiff base ligand and M = Co(II), Cu(II) and Zn(II). IR results confirmed the tridentate binding of the Schiff base ligand involving azomethine nitrogen, naphthol oxygen and carboxylato oxygen atoms. 1H NMR spectral data of lithium salt of the Schiff base ligand [Li(HL)] and ZnL(H2O) agreed with the proposed structures. The conductivity values of complexes between 12.50 and 15.45 S cm2 mol?1 in DMF suggested the presence of non‐electrolyte species. The powder XRD studies indicated that Co(II) complex is amorphous, whereas Cu(II) and Zn(II) complexes are crystalline. The results of antibacterial and antifungal screening studies indicated that Li(HL) and its metal complexes are active, but CuL(H2O) is most active among them. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Summary Transition metal(II) chloro complexes of the new Schiff base ligand 1,2-bis(2-pyridylmethyleneimino)benzene (L), derived from 2-pyridinecarboxaldehyde and 1,2-phenylenediamine, were prepared. Compounds of [MnLCl2]-H2O, [CoLCl2]·2H2O, [NiLCl2] and [Zn3L2Cl4]Cl2 were prepared. Details are given of the formation of the complex [Cu(L·EtOH)Cl2], in which one molecule of EtOH adds across only one of the Schiff base {ie531-01} groups to give the coordinated ligand L·EtOH. The rationalization of this type of reaction by considering the steric requirements of the ligand is given. The complexes were characterized by elemental analyses, conductivity measurements, thermal techniques, mass spectra, magnetic susceptibilities and spectroscopic (i.r., ligand field, e.s.r., 1H n.m.r.) studies. The nitrogen donor atoms of the tetradentate ligands L and L·EtOH are assumed to adopt an essentially planar arrangement about manganese(II), cobalt(II), nickel(II) and copper(II), with the remaining axial coordination sites occupied by chloro ligands to yield high-spin octahedral molecules. A trinuclear structure, based on tetrahedrally coordinated metal ions, is proposed for the zinc(II) complex.  相似文献   

18.
Summary Synthesis of a new Schiff base derived from salicylaldehyde and 5-methylpyrazole-3-carbohydrazide, and its coordination compounds with nickel(II), cobalt(II), copper(II), manganese(II), zinc(II), zirconium(IV), dioxouranium(VI) and dioxomolybdenum(VI) are described. The ligand and the complexes have been characterized on the basis of analytical, conductance, molecular weight, i.r., electronic and n.m.r. spectra and magnetic susceptibility measurements. The stoichiometries of the complexes are represented as NiL · 3H2O, CoL · 2H2O, CuL, MnL · 2H2O, ZnL · H2O, Zr(OH)2(LH)2, Zr(OH)2L · 2MeOH, UO2L · MeOH and MoO2L · MeOH (where LH2 = Schiff base). The copper(II) complex shows a subnormal magnetic moment due to antiferromagnetic exchange interaction while the nickel(II), cobalt(II) and manganese (II) complexes show normal magnetic moments at room temperature. The i.r. and n.m.r. spectral studies show that the Schiff base behaves as a dibasic and tridentate ligand coordinating through the deprotonated phenolic.oxygen, enolic oxygen and azomethine nitrogen.  相似文献   

19.
New unsymmetrical Schiff base ligand (H2L) is prepared via condensation of 2-hydroxy-5-methyl acetophenone, 2-hydroxy-5-chloro-3-nitro acetophenone and carbohydrazide in 1:1:1 ratio. Metal complexes of VO(IV), Cr(III), Mn(III), Fe(III), Zr(IV), MoO2(VI), WO2(VI) and UO2(VI) have been prepared. These complexes were characterized by elemental analysis, UV–Vis and IR spectroscopy and magnetic moment and thermogravimetric analysis. The purity of the ligand and the metal complexes is confirmed by microanalyses, while unsymmetrical nature of ligand was further corroborated by 1H NMR. All the complexes are air stable and insoluble in water and common organic solvents but fairly soluble in DMSO. The elemental analysis shows 1:1 metal to ligand stoichiometry for all the complexes. Thermal behaviour of the complexes was studied, the complexes were found to be quite stable and their thermal decomposition was generally via partially loss of the organic moiety and ended with respective metal oxide as a final product. Comparison of the IR spectrum of ligand and its metal complexes confirm that Schiff base behave as a dibasic tetradentate ligand towards the central metal ion with an ONNO donor sequence. The dc electrical conductivity is studied and data obtained obeyed the relation σ = σ 0 exp(−E a/kT) over the temperature range 40–130 °C. X-ray diffraction study of VO(IV) complex shows its crystalline nature with triclinic crystal system.  相似文献   

20.
A novel tetradentate N2O2 type Schiff base, synthesized from 1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one(4-aminoantipyrine) and 3-salicylidene-acetylacetone, forms stable complexes with transition metal ions such as Cu II , Ni II , Co II and Zn II in ethanol. Microanalytical data, magnetic susceptibility, IR, UV-Vis.,1H-NMR, ESR and Mass spectral techniques were used to confirm the structures. Electronic absorption spectra of the complexes suggest a square-planar geometry around the central metal ion. These complexes show higher conductance values, supporting their electrolytic nature. The monomeric nature of the complexes was confirmed from their magnetic susceptibility values. Cyclic voltammogram of the copper(II) and nickel(II) complexes in DMSO solution at 300 K were recorded and the results are discussed. The X-band ESR spectra of the copper complex were recorded and the molecular orbital coefficient values were calculated from the spectra. The in vitro antimicrobial activities of the investigated compounds were tested against bacteria such as Klebsiella pneumoniae, Staphylococcus aureus, Bacillus subtilis and Escherichia coli and fungi like Aspergillus niger and Rhizoctonia bataicola. Most of the metal chelates show higher antimicrobial activity for the above microorganisms than that of the free ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号