首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Analysis of the products of the reactions of ketones R2CO (R = Me, Et, iPr, tBu) with the MCl4/Li(Hg) system (M = U, Ti) at 20 degrees C revealed significant differences. For R = Me, the reaction proceeded exclusively (M = U) or preferentially (M = Ti) via a metallopinacol intermediate resulting from dimerization of ketyl radicals. Pinacol was liberated by hydrolysis, and tetramethylethylene was obtained after further reduction at 65 degrees C. For R=iPr, formation of iPr2C=CiPr2 as the only coupling product, the nonproduction of this alkene by reduction of the uranium pinacolate [U]-OCR2CR2O-[U] (R= iPr) at 20 degrees C, and the instability of the corresponding titanium pinacolate towards rupture of the pinacolic C-C bond indicated that reductive coupling of iPr2CO did not proceed by dimerization of ketyl radicals. Formation of 2,4-dimethyl-2-pentene was in favor of a carbenoid intermediate resulting from deoxygenative reduction of the ketyl. These results revealed that for sterically hindered ketones, McMurry reactions can be viewed as Wittig-like olefination reactions. For R=tBu, no coupling product was obtained and the alkane tBu2CH2 was the major product. The involvement of the carbenoid species [M]=CtBu2 was confirmed by its trapping with H2O, leading to tBu2CH2, and with the aldehydes RCHO, giving the cross-coupling products tBu2C=C(R)H (R = Me, tBu). Therefore, in the case of severely congested ketones, McMurry reactions present strong similarities to the Clemmensen reduction of ketones, owing to the involvement in both reactions of carbenoid species which exhibit similar reactivity.  相似文献   

2.
A rare case of directly observed alkyl halide reductive elimination from rhodium is reported. Treatment of the naphthyl-based PCP-type Rh(III) methyl complexes 2a,b [(C10H5(CH2PR2)2)Rh(CH3)(I)] (R = iPr 2a, R = tBu 2b) with CO resulted in facile reductive elimination of methyl iodide in the case of 2b, yielding the Rh(I) carbonyl complex [(C10H5(CH2PR2)2)Rh(CO)] 3b (R = tBu), while the less bulky 2a formed CO adducts and did not undergo reductive elimination, contrary to expectations based on electron density considerations. Moreover, 3b oxidatively added methyl iodide, while 3a did not. CD3I/CH3I exchange studies in the absence of CO indicate that reversible formation of (ligated) methyl iodide takes place in both systems. Subsequently, when CO is present, it displaces methyl iodide in the bulkier tBu system, whereas with the iPr system formation of the Rh(III) CO adducts is favored. Iodide dissociation followed by its attack on the rhodium-methyl group is unlikely.  相似文献   

3.
The surprising transformation of the saturated diamine (iPr)NHCH(2)CH(2)NH(iPr) to the unsaturated diazaethene [(iPr)NCH═CHN(iPr)](2-) via the synergic mixture nBuM, (tBu)(2)Zn and TMEDA (where M = Li, Na; TMEDA = N,N,N',N'-tetramethylethylenediamine) has been investigated by multinuclear NMR spectroscopic studies and DFT calculations. Several pertinent intermediary and related compounds (TMEDA)Li[(iPr)NCH(2)CH(2)NH(iPr)]Zn(tBu)(2) (3), (TMEDA)Li[(iPr)NCH(2)CH(2)CH(2)N(iPr)]Zn(tBu) (5), {(THF)Li[(iPr)NCH(2)CH(2)N(iPr)]Zn(tBu)}(2) (6), and {(TMEDA)Na[(iPr)NCH(2)CH(2)N(iPr)]Zn(tBu)}(2) (11), characterized by single-crystal X-ray diffraction, are discussed in relation to their role in the formation of (TMEDA)M[(iPr)NCH═CHN(iPr)]Zn(tBu) (M = Li, 1; Na, 10). In addition, the dilithio zincate molecular hydride [(TMEDA)Li](2)[(iPr)NCH(2)CH(2)N(iPr)]Zn(tBu)H 7 has been synthesized from the reaction of (TMEDA)Li[(iPr)NCH(2)CH(2)NH(iPr)]Zn(tBu)(2)3 with nBuLi(TMEDA) and also characterized by both X-ray crystallographic and NMR spectroscopic studies. The retention of the Li-H bond of 7 in solution was confirmed by (7)Li-(1)H HSQC experiments. Also, the (7)Li NMR spectrum of 7 in C(6)D(6) solution allowed for the rare observation of a scalar (1)J(Li-H) coupling constant of 13.3 Hz. Possible mechanisms for the transformation from diamine to diazaethene, a process involving the formal breakage of four bonds, have been determined computationally using density functional theory. The dominant mechanism, starting from (TMEDA)Li[(iPr)NCH(2)CH(2)N(iPr)]Zn(tBu) (4), involves the formation of a hydride intermediate and leads directly to the observed diazaethene product. In addition the existence of 7 in equilibrium with 4 through the dynamic association and dissociation of a (TMEDA)LiH ligand, also provides a secondary mechanism for the formation of the diazaethene. The two reaction pathways (i.e., starting from 4 or 7) are quite distinct and provide excellent examples in which the two distinct metals in the system are able to interact synergically to catalyze this otherwise challenging transformation.  相似文献   

4.
The reactions of the hydrido compounds [RuHCl(CO)(L)2][L = PiPr3 (1), PCy3 (2)] with HC(triple bond)CR (R = H, Ph, tBu) afforded by insertion of the alkyne into the Ru-H bond the corresponding vinyl complexes [RuCl(CHCHR)(CO)(L)2], 3-8, which upon protonation with HBF4 gave the cationic five-coordinated ruthenium carbenes [RuCl(CHCH2R)(CO)(L)2]BF4, 9-14. Subsequent reactions of the carbene complexes with PR3(R = Me, iPr) and CH3CN led either to deprotonation and re-generation of the vinyl compounds or to cleavage of the ruthenium-carbene bond and the formation of the six-coordinated complexes [RuCl(CO)(CH3CN)2(PiPr3)2]BF4, 17, and [RuH(CO)(CH3CN)2(PiPr3)2]X, 18a,b. The acetato derivative [RuH(2-O2CCH3)(CO)(PCy3)2], 19, also reacted with acetylene and phenylacetylene by insertion to yield the related vinyl complexes [Ru(CHCHR)(kappa2-O2CCH3)(CO)(PCy3)2], 20, 21, of which that with R = H was protonated with HBF4 to yield the corresponding cationic ruthenium carbene 22. With [RuHCl(H2)(PCy3)2], 25, as the starting material, the five-coordinated chloro(hydrido)ruthenium(II) compounds [RuHCl(PCy3)(dppf)], 26(dppf = [Fe(eta5-C5H4PPh2)2]), [RuHCl[Sb(CH2Ph)3](PCy3)2], 27, and [RuHCl(CH3CN)(PCy3)2], 30, were prepared. The reactions of 27 with HCCR (R = H, Ph) gave the hydrido(vinylidene) complexes [RuHCl(CCHR)(PCy3)2], 28 and 29, whereas treatment of 30 with HC(triple bond)CPh afforded the vinyl compound [RuCl(CHCHPh)(CH3CN)(PCy3)2], 31. The molecular structures of 11(R = tBu, L = PiPr3) and 26 were determined crystallographically.  相似文献   

5.
Free Car-Parrinello molecular dynamics (CPMD) simulations of four diastereomers of the zirconium-propene complexes [{iPr(3-iPr-CpFlu)}ZriBu(C3H6)]+ (Cp=cyclopentadienyl; Flu=fluorenyl) provide valuable insight into the mechanism and stereocontrol of propene polymerization with stereorigid metallocenes. Spontaneous insertion of propene into the zirconium-isobutyl bond is not observed, and propene is found to be weakly bound and to rotate relatively freely around the C--C bond to be formed. Large-amplitude rotation of the isopropyl substituent around the Cp--iPr bond may play a role in triggering dissociation of propene. Three of the four diastereomers eliminate propene during the course of the simulations, which makes dissociation the dominating event on a 20-ps timescale. The CPMD simulations thus support the validity of the assumption, fundamental to statistical propagation models, that each insertion is independent of the preceding insertions. Using insertion barriers from static density functional calculations, the statistical model predicts the polypropene microstructure in good agreement with experiment at low polymerization temperatures for the catalysts {iPr(3-R-CpFlu)}ZrCl2 (R=H, iPr, tBu). The predictions become less accurate at higher temperatures, probably due to the onset of the competing back-skip reaction, which is not included in the model.  相似文献   

6.
The synthesis and characterization of several Pt(ii) complexes, including formyl complexes, based on the PCP-type pincer ligands C(6)H(4)[CH(2)P(iPr)(2)](2) ((iPr)PCP) and C(6)H(4)[CH(2)P(tBu)(2)](2) ((tBu)PCP) are described. The chloride complex ((iPr)PCP)PtCl (6) and the unsaturated cationic complexes [(PCP)Pt](+)X(-) (X = OTf(-), BF(4)(-)) (1, 7), based on both PCP ligands, were prepared and the latter reacted with carbon monoxide to give the corresponding cationic carbonyl complexes [(PCP)Pt(CO)](+)X(-) (X = OTf(-), BF(4)(-)) (2, 8a). Hydride nucleophilic attack on both carbonyl complexes resulted in rare neutral platinum formyl complexes ((iPr)PCP)Pt(CHO) (3) and ((tBu)PCP)Pt(CHO) (9). Complex 3 undergoes decarbonylation to the corresponding hydride complex within hours at room temperature, while the bulkier complex 9 is more stable and undergoes complete decarbonylation only after 3-4 d. This observation demonstrates the very significant steric effect of the ligand on stabilization of the corresponding formyl complexes. Reaction of complex 9 with triflic acid resulted in the carbonyl complex [((tBu)PCP)Pt(CO)](+) OTf(-) (8b) with liberation of H(2), an unusual transformation for a metal formyl. Reaction with methyl triflate resulted in the Fischer carbene-type complex, the methoxy-methylidene [((tBu)PCP)Pt(CHOCH(3))](+)OTf(-) (11). The X-ray structures of complexes 2, 6, 8a and 11 were determined.  相似文献   

7.
The reactions of bis- and tris(tert-butylethynyl)benzenes with dialkylgallium hydrides afforded two different types of products. 1,4-Di(tert-butylethynyl)benzene and dialkylgallium hydrides R(2)GaH bearing relatively small substituents (R = Et, nPr) gave the expected addition products with each C triple bond C triple bond inserted into a Ga-H bond. The intact GaR(2) groups are attached to those carbon atoms which are in alpha-position to the benzene rings, and intermolecular Ga-C interactions led to the formation of one-dimensional coordination polymers. In contrast secondary reactions with the release of the corresponding trialkylgallium derivatives GaR(3) (R = Et, nPr, iPr, CH(2)tBu, tBu) were observed for all hydrogallation reactions involving the trisalkyne 1,3,5-tris(tert-butylethynyl)benzene. A similar reaction was observed upon treatment of the 1,4-bisalkyne with a dialkylgallium hydride bearing a relatively bulky substituent (R = neopentyl). Cyclophane type molecules are formed in all these cases with two or three gallium atoms in the bridging positions between both benzene rings.  相似文献   

8.
The silyloxycyclopentadienyl hydride complexes [Re(H)(NO)(PR(3))(C(5)H(4)OSiMe(2)tBu)] (R=iPr (3 a), Cy (3 b)) were obtained by the reaction of [Re(H)(Br)(NO)(PR(3))(2)] (R=iPr, Cy) with Li[C(5)H(4)OSiMe(2)tBu]. The ligand-metal bifunctional rhenium catalysts [Re(H)(NO)(PR(3))(C(5)H(4)OH)] (R=iPr (5 a), Cy (5 b)) were prepared from compounds 3 a and 3 b by silyl deprotection with TBAF and subsequent acidification of the intermediate salts [Re(H)(NO)(PR(3))(C(5)H(4)O)][NBu(4)] (R=iPr (4 a), Cy (4 b)) with NH(4)Br. In nonpolar solvents, compounds 5 a and 5 b formed an equilibrium with the isomerized trans-dihydride cyclopentadienone species [Re(H)(2)(NO)(PR(3))(C(5)H(4)O)] (6 a,b). Deuterium-labeling studies of compounds 5 a and 5 b with D(2) and D(2)O showed H/D exchange at the H(Re) and H(O) positions. Compounds 5 a and 5 b were active catalysts in the transfer hydrogenation reactions of ketones and imines with 2-propanol as both the solvent and H(2) source. The mechanism of the transfer hydrogenation and isomerization reactions was supported by DFT calculations, which suggested a secondary-coordination-sphere mechanism for the transfer hydrogenation of ketones.  相似文献   

9.
A first structurally characterized primary aminophosphane (Ar 2PNH 2 ( 2); Ar = 2,4,6- iPr 3C 6H 2) that is a stable solid at room temperature without decomposition by self-condensation is reported. Reactions of N-phosphanyllithium amide ( tBu 2PNHLi ( 3)) with Me 2SiCl 2 and MeSiCl 3 in Et 2O result in the formation of Me 2Si(NHP tBu 2) 2 ( 4) and MeSi(NHP tBu 2) 3 ( 5), respectively. Subsequent treatment of 4 and 5 with 2 and 3 equiv of nBuLi gave the dilithium ( 6) and trilithium ( 7) complexes, respectively. Further treatment of 5 with 3 equiv of AlMe 3 yielded the trialuminum complex MeSi[N(AlMe 2)P tBu 2] 3 ( 8). These three complexes were investigated by microanalysis and multinuclear NMR spectroscopy. The dilithium complex [Me 2Si(NLiP tBu 2) 2.3THF] ( 6) and the trilithium complex [MeSi(NLiP tBu 2) 3.3Et 2O] ( 7) were further characterized by single-crystal X-ray structural analysis.  相似文献   

10.
The reaction of a solution of B(C6F4H)3 and either iPr3P or tBu3P with CO2 afforded the species R3P(CO2)B(C6F4H)3 (R=iPr (1), tBu (2)). In a similar fashion the boranes, RB(C6F5)2 (R=hexyl, cyclohexyl (Cy), norbornyl), ClB(C6F5)2, or PhB(C6F5)2 were combined with tBu3P and CO2 to give the species tBu3P(CO2)BR(C6F5)2 (R=hexyl (3), Cy (4), norbornyl (5), Cl (6), Ph (7)). Similarly, the compounds [tBu3PH][RBH(C6F5)2] (R= hexyl (8), Cy (9), norbornyl (10)) were prepared by reaction of the precursor frustrated Lewis pair (FLP) with H2. Subsequent reactions of 9 and 10 with CO2 afforded the species [((C6F5)2BR)2(μ-HCO2)][tBu3PH] (R= Cy (11), norbornyl (12)). In related chemistry, combinations of the boranes RBG(C6F5)2 (R=hexyl, Cy, norbornyl) with tBu3P treated with an equivalent of formic acid gave [(C6F5)2BR(HCO2)][tBu3PH] (R=hexyl (13), Cy (14), norbornyl (15)). Subsequent addition of an additional equivalent of borane provides a second synthetic route to 11 and 12. Crystallographic studies of compounds 2-6 and 8-14 are reported and discussed. Further understanding of the FLP complexation and activation of CO2 is provided by computational studies.  相似文献   

11.
The sterically hindered, three-coordinate metal systems M[N(R)Ar]3 (R = tBu, iPr; Ar = 3,5-C6H3Me2) are known to bind and activate a number of fundamental diatomic molecules via a [Ar(R)N]3M-L-L-M[N(R)Ar]3 dimer intermediate. To predict which metals are most suitable for activating and cleaving small molecules such as N(2), NO, CO, and CN(-), the M-L bond energies in the L-M(NH2)3 (L = O, N, C) model complexes were calculated for a wide range of metals, oxidation states, and dn (n = 2-6) configurations. The strongest M-O, M-N, and M-C bonds occurred for the d2, d3, and d4 metals, respectively, and for these d(n) configurations, the M-C and M-O bonds were calculated to be stronger than the M-N bonds. For isoelectronic metals, the bond strengths were found to increase both down a group and to the left of a period. Both the calculated N-N bond lengths and activation barriers for N2 bond cleavage in the (H2N)3M-N-N-M(NH2)3 intermediate dimers were shown to follow the trends in the M-N bond energies. The three-coordinate complexes of Ta(II), W(III), and Nb(II) are predicted to deliver more favorable N2 cleavage reactions than the experimentally known Mo(III) system and the Re(III)Ta(III) dimer, [Ar(R)N]3Re-CO-Ta[N(R)Ar]3, is thermodynamically best suited for cleaving CO.  相似文献   

12.
New mononuclear titanium and zirconium imido complexes [M(NR)(R'(2)calix)] [M=Ti, R'=Me, R=tBu (1), R=2,6-C(6)H(3)Me(2) (2), R=2,6-C(6)H(3)iPr(2) (3), R=2,4,6-C(6)H(2)Me(3) (4); M=Ti, R'=Bz, R=tBu (5), R=2,6-C(6)H(3)Me(2) (6), R=2,6-C(6)H(3)iPr(2) (7); M=Zr, R'=Me, R=2,6-C(6)H(3)iPr(2) (8)] supported by 1,3-diorganyl ether p-tert-butylcalix[4]arenes (R'(2)calix) were prepared in good yield from the readily available complexes [MCl(2)(Me(2)calix)], [Ti(NR)Cl(2)(py)(3)], and [Ti(NR)Cl(2)(NHMe(2))(2)]. The crystallographically characterised complex [Ti(NtBu)(Me(2)calix)] (1) reacts readily with CO(2), CS(2), and p-tolyl-isocyanate to give the isolated complexes [Ti[N(tBu)C(O)O](Me(2)calix)] (10), [[Ti(mu-O)(Me(2)calix)](2)] (11), [[Ti(mu-S)(Me(2)calix)](2)] (12), and [Ti[N(tBu)C(O)N(-4-C(6)H(4)Me)](Me(2)calix)] (13). In the case of CO(2) and CS(2), the addition of the heterocumulene to the Ti-N multiple bond is followed by a cycloreversion reaction to give the dinuclear complexes 11 and 12. The X-ray structure of 13.4(C(7)H(8)) clearly establishes the N,N'-coordination mode of the ureate ligand in this compound. Complex 1 undergoes tert-butyl/arylamine exchange reactions to form 2, 3, [Ti(N-4-C(6)H(4)Me)(Me(2)calix)] (14), [Ti(N-4-C(6)H(4)Fc)(Me(2)calix)] (15) [Fc=Fe(eta(5)-C(5)H(5))(eta(5)-C(5)H(4))], and [[Ti(Me(2)calix)](2)[mu-(N-4-C(6)H(4))(2)CH(2)]] (16). Reaction of 1 with H(2)O, H(2)S and HCl afforded the compounds [[Ti(mu-O)(Me(2)calix)](2)] (11), [[Ti(mu-S)(Me(2)calix)](2)] (12), and [TiCl(2)(Me(2)calix)] in excellent yields. Furthermore, treatment of 1 with two equivalents of phenols results in the formation of [Ti(O-4-C(6)H(4)R)(2)(Me(2)calix)] (R=Me 17 or tBu 18), [Ti(O-2,6-C(6)H(3)Me(2))(2)(Me(2)calix)] (19) and [Ti(mbmp)(Me(2)calix)] (20; H(2)mbmp=2,2'-methylene-bis(4-methyl-6-tert-butylphenol) or CH(2)([CH(3)][C(4)H(9)]C(6)H(2)-OH)(2)). The bis(phenolate) compounds 17 and 18 with para-substituted phenolate ligands undergo elimination and/or rearrangement reactions in the nonpolar solvents pentane or hexane. The metal-containing products of the elimination reactions are dinuclear complexes [[Ti(O-4-C(6)H(4)R)(Mecalix)](2)] [R=Me (23) or tBu (24)] where Mecalix=monomethyl ether of p-tert-butylcalix[4]arene. The products of the rearrangement reaction are [Ti(O-4-C(6)H(4)Me)(2) (paco-Me(2)calix)] (25) and [Ti(O-4-C(6)H(4)tBu)(2)(paco-Me(2)calix)] (26), in which the metallated calix[4]arene ligand is coordinated in a form reminiscent of the partial cone (paco) conformation of calix[4]arene. In these compounds, one of the methoxy groups is located inside the cavity of the calix[4]arene ligand. The complexes 24, 25 and 26 have been crystallographically characterised. Complexes with sterically more demanding phenolate ligands, namely 19 and 20 and the analogous zirconium complexes [Zr(O-4-C(6)H(4)Me)(2)(Me(2)calix)] (21) and [Zr(O-2,6-C(6)H(3)Me(2))(2)(Me(2)calix)] (22) do not rearrange. Density functional calculations for the model complexes [M(OC(6)H(5))(2)(Me(2)calix)] with the calixarene possessing either cone or partial cone conformations are briefly presented.  相似文献   

13.
The synthesis, structure, and properties of six luminescent pyridylpyrrolide complexes and the first structural characterization of pyridylpyrrolide metal complexes are reported. A series of new zinc complexes, bis(pyridylpyrrolyl)zinc, (R2PyrPy)2Zn (R = Me, Et, iPr, tBu, and Ph), that vary in their substituents on the pyrrole ring (Me, Et, iPr, tBu, and Ph), were prepared. Pyrrole substitution produced small structural changes in the complexes and affected the fluorescence properties very little. The zinc complexes were found to be luminescent, emitting at 495 nm (Phi = 0.32, 0.32 0.31, 0.19 and 0.57, respectively). A boron analog, (Me2PyrPy)BF2, was prepared and was found to share the luminescent properties with the zinc complexes, emitting at 505 nm (Phi = 0.22), but not their water-sensitivity. A total of four crystal structures are reported, tBu2PyrPyH, (Me2PyrPy)2Zn, (tBu2PyrPy)2Zn, and (Me2PyrPy)BF2. tBu2PyrPyH crystallizes as a doubly hydrogen bonded dimer with non-coplanar pyridine and pyrrole rings. The solid-state structures of (Me2PyrPy)2Zn and (tBu2PyrPy)2Zn revealed that despite the large change in steric bulk, the two compounds have very similar structures. The structure of (Me2PyrPy)BF2 showed changes that are expected with the interaction between a smaller atom (B as compared to Zn). Molecular orbital calculations were performed on Me2PyrPyH, (Me2PyrPy)BF2, and (Me2PyrPy)2Zn using Gaussian 98 methods. It was found that the main transition (HOMO-LUMO) for all three molecules is a pi-->pi* transition and that in the inorganic complexes, the metal atom (zinc or boron) present has very little effect on transition, evidence that the optical properties are largely ligand based and that the B or Zn atom's main effect is lowering of the LUMO relative energy.  相似文献   

14.
The boron-bridged constrained geometry titanium complexes [Ti[eta5:eta1-(C5H4)B(NR2)NPh](NMe2)2][R = iPr (3), SiMe3(4)] and [Ti[eta5:eta1-(C9H6)B(NiPr2)NPh](NMe2)2](12) have been prepared in good yields by amine elimination reaction from [Ti(NMe2)4]. Subsequent deamination-chlorination with excess Me3SiCl yielded the corresponding dichloro-complexes (5, 6, 13). Reaction of the analogous ligand precursors (C5H5)B(NiPr2)N(H)R (R = Cy, tBu) with [Ti(NMe2)4] did not result in the expected bridged compounds, but rather in the half-sandwich complexes [Ti[(eta5-C5H4)B(NiPr2)N(H)R](NMe2)3][R = Cy (9), tBu (10)]. All compounds were fully characterised by means of multinuclear NMR spectroscopy. Thorough investigation of substituent effects was achieved by comparative X-ray diffraction studies on complexes 3, 5, 6 and 12.  相似文献   

15.
Addition of 1.5 equiv of I2 to a THF solution of UI3(THF)4, containing either 6 equiv of tBuNH2 or 2 equiv of RNH2 (R = Ph, 3,5-(CF3)2C6H3, 2,6-(iPr)2C6H3) and 4 equiv of NEt3, generates orange solutions containing U(NtBu)2I2(THF)2 (1) or U(NAr)2I2(THF)3 (Ar = Ph, 2; 3,5-(CF3)2C6H3, 3; 2,6-(iPr)2C6H3, 4), respectively, all of which can be isolated in good yields. Alternatively, 1 can be prepared by reaction of uranium metal with 3 equiv of I2 and 6 equiv of tBuNH2, also in good yield. Complexes 1-4 have been characterized by X-ray crystallography, and each of these complexes exhibits linear N-U-N linkages and short U-N bonds. Using density functional theory simulations of complexes 1 and 2, two triple bonds between the metal center and the nitrogen ligands were identified. Complexes 1 and 2 readily react with neutral Lewis bases such as pyridine or Ph3PO to form U(NR)2I2(L)2 (R = tBu, L = py, 5; Ph3PO, 7; R = Ph, L = py, 6; Ph3PO, 8), and with PMe3 to form U(NR)2I2(THF)(PMe3)2 (R = tBu, 9; Ph, 10). The solid-state molecular structures of 5, 7, and 9 have been determined by X-ray crystallography, and these complexes, like their parent compounds, exhibit linear N-U-N angles and short U-N bonds. Complexes 1 and 2 also react with AgOTf in CH2Cl2, forming U(NR)2(OTf)2(THF)3 (R = tBu, 11; Ph, 12) after recrystallization from THF. Crystals of 12 grown from CH2Cl2 were found to contain a dimer, [U(NPh)2(OTf)2(THF)2]2, a complex possessing bridging triflate groups.  相似文献   

16.
Reaction of potassium tris(mercapto-tert-butylpyridazinyl)borate K[Tn(tBu)] with copper(II) chloride in dichloromethane at room temperature led to the diamagnetic copper boratrane compound [Cu{B(Pn(tBu))(3)}Cl] (Pn = pyridazine-3-thionyl) (1) under activation of the B-H bond and formation of a Cu-B dative bond. In contrast to this, stirring of the same ligand with copper(I) chloride in tetrahydrofuran (THF) gave the dimeric compound [Cu{Tn(tBu)}](2) (2) where one copper atom is coordinated by two sulfur atoms and one hydrogen atom of one ligand and one sulfur of the other ligand. Hereby, no activation of the B-H bond occurred but a 3-center-2-electron B-H···Cu bond is formed. The reaction of copper(II) chloride with K[Tn(tBu)] in water gave the same product 2, but a formal reduction of the metal center from Cu(II) to Cu(I) occurred. When adding tricyclohexyl phosphine to the reaction mixture of K[Tn(R)] (R = tBu, Me) and copper(I) chloride in MeOH, the distorted tetrahedral Cu complexes [Cu{Tn(R)}(PCy(3))] (R = tBu 3, Me 4) were formed. Compound 4 is exhibiting an "inverted" κ(3)-H,S,S, coordination mode. The copper boratrane 1 was further investigated by density functional theory (DFT) calculations for a better understanding of the M→B interaction involving the d(8) electron configuration of Cu.  相似文献   

17.
The reactions of zinc dialkyls, R(2)Zn (1a-d; R = Me (a), Et (b), iPr (c) and tBu (d)), with N,N-dialkylhydroxylamines, HO-NR'(2) (2a-c; R' = Me (a), Et (b) and iPr (c)), afford organozinc hydroxylamides under alkane extrusion. Species of different nuclearity are observed, depending on the hydroxylamine 2 employed. The smaller 2a and 2b give pentanuclear complexes of the general formula Zn(RZn)(4)O-NR'(2))(6) (R = Me, Et, iPr and tBu; R' = Me and Et), whereas the derivatives of 2c are tetramers of the general formula (RZn)(4)(O-NR'(2))(4) (R = Me, Et and iPr; R' = iPr) as governed by bulk issues about the N-donor. Due to the ability of the double-donor unit O-NR(2) to change its bridging mode, two coordination isomers exist for both types of compounds. The pentanuclear species crystallise either in a heterofenestrane or an octahedroid motif. For these species, the central Zn atom exhibits either coordination number 4 or 6; in solution, a rapid change between coordination isomers is observed. Due to the absence of a central Zn atom in the tetranuclear species, these aggregate in heterocubane geometries or such derived thereof. They display the O-N units in either κ(3)O or κ(2)O;κ(1)N mode. The tetranuclear species are also yielded with the less sterically encumbered precursors under thermodynamic conditions (i.e. reflux), as exemplified by the reaction of Me(2)Zn (1a) with HO-NEt(2) (2b). They are non-dynamic in solution, showing that a central cation is mandatory for the fluxional behaviour observed for the pentanuclear derivatives. DFT studies on the O-NMe(2) series reveal that the relative energies of the pentazinc isomers become more similar with increasing RZn group size; possible conversions of these to their tetrazinc counterparts were also scrutinised. Two κ(3)O-bridged degradation products of hydroxylamide complexes could be structurally characterised. They were formed either by partial product hydrolysis, or by in situ oxygenation of the starting zinc dialkyl.  相似文献   

18.
The kinetics and the mechanism of the substitution reactions of the complex [(TL(tBu))PdCl](+), where TL(tBu) is 2,6-bis[(1,3-di-tert-butylimidazolin-2-imino)methyl]pyridine, with nucleophiles (guanosine-5'-monophosphate (5'-GMP), l-Methionine (l-Met) and l-Histidine (l-His)) were studied using variable-temperature stopped-flow techniques in aqueous 0.1 M NaClO(4) with 10 mM NaCl at 298 K. The order of reactivity is: l-Met > 5'-GMP > l-His. The formation equilibria of [(BL(iPr))Pd(H(2)O)(2)](2+), where BL(iPr) is 1,2-bis(1,3diisopropyl-4,5-dimethylimidazolin-2-imino)ethane, and [(TL(tBu))Pd(H(2)O)](2+) with some biologically relevant ligands (l-Met, 5'-GMP and l-His) were also studied. The stoichiometry and stability constants of the newly formed complexes are reported, and the concentration distribution of the various complex species has been evaluated as a function of pH. Comparing the values of logβ(1,1,0) for 5'-GMP, l-His and l-Met complexes, the most stable complex is with 5'-GMP followed by l-His and l-Met for both complexes, [(BL(iPr))Pd(H(2)O)(2)](2+) and [(TL(tBu))Pd(H(2)O)](2+). The crystal structures of [(TL(tBu))PdCl]ClO(4) and [(BL(iPr))PdCl(2)] were determined by X-ray diffraction. The coordination geometries around the palladium atoms are distorted square-planar, with the Pd-N1 distance to the central nitrogen atom of the TL(tBu) ligand, 1.944(2) ?, being shorter than those to the other two nitrogen atoms of TL(tBu), viz. 2.034(3) and 2.038(2) ?. The BL(iPr) complex displays similar Pd-N distances of 2.031(2) and 2.047(2) ?.  相似文献   

19.
Chemically reasonable models of PR3 (R = Me, Et, iPr, and tBu) were constructed to apply the post Hartree-Fock method to large transition metal complexes. In this model, R is replaced by the H atom including the frontier orbital consistent quantum capping potential (FOC-QCP) which reproduces the frontier orbital energy of PR3. The steric effect is incorporated by the new procedure named steric repulsion correction (SRC). To examine the performance of this FOC-QCP method with the SRC, the activation barriers and reaction energies of the reductive elimination reactions of C2H6 and H2 from M(R1)2(PR2(3))2 (M = Ni, Pd, or Pt; R1 = Me for R2 = Me, Et, or iPr, or R1 = H for R2 = tBu) were evaluated with the DFT[B3PW91], MP4(SDQ), and CCSD(T) methods. The FOC-QCP method reproduced well the DFT[B3PW91]- and MP4(SDQ)-calculated energy changes of the real complexes with PMe3. For more bulky phosphine, the SRC is important to present correct energy change, in which the MP2 method presents reliable steric repulsion correction like the CCSD(T) method because the systems calculated in the SRC do not include a transition metal element. The monomerization energy of [RhCl(PiPr3)2]2 and the coordination energies of CO, H2, N2, and C2H4 with [RhCl(PiPr3)2]2 were theoretically calculated by the CCSD(T) method combined with the FOC-QCP and the SRC. The CCSD(T)-calculated energies agree well with the experimental ones, indicating the excellent performance of the combination of the FOC-QCP with the SRC. On the other hand, the DFT[B3PW91]-calculated energies of the real complexes considerably deviate from the experimental ones.  相似文献   

20.
Heating of 6-methylpyridazine-3-thione (HPn(Me)) and 6-tert-butylpyridazine-3-thione (HPn(tBu)) with potassium borohydride in diphenylmethane in a 3:1 ratio gave two new scorpionate ligands K[HB(Pn(Me))(3)] and K[HB(Pn(tBu))(3)]. Single crystal X-ray diffraction analysis of the methyl derivative K[HB(Pn(Me))(3)] revealed a dimeric species with one potassium atom coordinated by six sulfur atoms of two scorpionate ligands and a second potassium atom coordinated by three nitrogen atoms of one of the two ligands as well as by three water molecules. The reaction of K[HB(Pn(tBu))(3)] with nickel(II) chloride or cobalt(II) chloride in CH(2)Cl(2) led to the new boratrane compounds [M{B(Pn(tBu))(3)}Cl] (M = Ni 1, Co 3) where a formal reduction of the metal ions to Ni(I) and Co(I), respectively, and activation of the B-H bond occurred. Similar reactivity was observed by employing K[HB(Pn(R))(3)] (R = Me, tBu) and nickel(II) chloride in water. Reaction with cobalt(II) chloride in water also gave boratrane compounds [Co{B(Pn(R))(3)}(Pn(R))] (R = tBu 4, Ph 5), but instead of a chloride a bidentate pyridazinethionate ligand from a defragmentated scorpionate is found in the molecules. The molecular structures of all nickel and cobalt compounds were determined by single crystal X-ray diffraction analyses confirming the formation of boratranes in compounds 1-5. Magnetic measurements confirm the reduced oxidation states and the paramagnetic character of the Ni(I) and Co(I) complexes. Supportive DFT studies were carried out for a better understanding of the electronic nature of the metal-boron bond of the boratrane complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号