首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Oil/water/surfactant systems form complex equilibrium phases which are sensitive to a number of parameters, including amount and concentration of cosurfactant (often an alcohol), salinity, and temperature. If one of these variables is changed systematically as, for example, the salinity, an interesting transition may be observed in which at low salinities a microemulsion is in equilibrium with an excess oil phase, at moderate salinities a middle phase microemulsion is in equilibrium with both excess oil and excess water phases, and at higher salinities brine is in equilibrium with a microemulsion phase. To help elucidate the structure of the microemulsion, studies of viscoelasticity and streaming birefringence in oscillatory shear flow have been conducted of a middle phase-forming system as a function of salinity. It is found that the viscoelastic properties of the microemulsions are unchanged for shear rates varying from 0.1 to 100 sec−1. Both the birefringence and the viscosity maximize near the salinity marking the transition from lower phase to middle phase microemulsion. Further inflections in these properties occur at a salinity marking the midrange of the middle phase microemulsion. For all cases the dominent relaxation time is near 3 to 5 msec while the birefringence changes by two orders of magnitude. The birefringence is a sensitive indicator of the elastic structure of the microemulsion.  相似文献   

2.
The phase behavior and structure of sucrose ester/water/oil systems in the presence of long-chain cosurfactant (monolaurin) and small amounts of ionic surfactants was investigated by phase study and small angle X-ray scattering. In a water/sucrose ester/monolaurin/decane system at 27 degrees C, instead of a three-phase microemulsion, lamellar liquid crystals are formed in the dilute region. Unlike other systems in the presence of alcohol as cosurfactant, the HLB composition does not change with dilution, since monolaurin adsorbs almost completely in the interface. The addition of small amounts of ionic surfactant, regardless of the counterion, increases the solubilization of water in W/O microemulsions. The solubilization on oil in O/W microemulsions is not much affected, but structuring is induced and a viscous isotropic phase is formed. At high ionic surfactant concentrations, the single-phase microemulsion disappears and liquid crystals are favored.  相似文献   

3.
The ternary phase diagram for the orange essential oil (OEO)/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/water system was constructed at 25 °C. It indicates a large single phase region, comprising an isotropic water-in-oil (W/O) microemulsion (ME) phase (L2), a liquid crystal (LC) (lamellar or hexagonal) and a large unstable emulsion phase that separates in two phases of normal and reverse micelles (L1 and L2). In this communication the properties of the ME are investigated by viscosity, electric conductivity and small angle X-ray scattering (SAXS) indicating that the isotropic ME phase exhibits different behaviors depending on composition. At low water content low viscous “dry” surfactant structures are formed, whereas at higher water content higher viscous water droplets are formed. The experimental data allow the determination of the transition from “dry” to the water droplet structures within the L2 phase. SAXS analyses have also been performed for selected LC samples.  相似文献   

4.
The non-ionic surfactant pentaethylenglycol-4-octylphenyl ether (igepal CA-520) represents a good industrial alternative to the long-tail members of the CiEj family. In this paper, the phase behaviour of the microemulsion system igepal CA-520/n-decane/brine is studied in detail. An isotropic phase was found, as well as liquid crystalline and cream-like structures, depending on composition and temperature. Such structures can either form single-phase homogeneous mixtures, or coexist with other structures when phase separation takes place. Below surfactant concentration of about 20%, more complicated phase equilibria develop as temperature changes. The presence of different additives shifts the temperature ranges where the different phases exist, while keeping the general shape of the phase diagram, which agrees with the general rules for non-ionic surfactants. Complementary rheology experiments reveal a change from non-Newtonian to Newtonian behaviour during the phase transition from a lamellar phase to the isotropic microemulsion. A structure of water droplets associated in clusters can be proposed from SANS and electrical conductivity.  相似文献   

5.
A nucleophilic substitution reaction between 4-tert-butylbenzyl bromide and potassium iodide has been performed in oil-in-water microemulsions based on various C12Em surfactants, i.e., dodecyl ethoxylate with m number of oxyethylene units. The reaction kinetics was compared with the kinetics of reactions performed in other self-assembly structures based on very similar surfactants and in homogeneous liquids. The reaction was fastest in the micellar system, intermediate in rate in the microemulsions, and most sluggish in the liquid crystalline phase. Reaction in a Winsor I system, i.e., a two-phase system comprising an oil-in-water microemulsion in equilibrium with excess oil, was equally fast as reaction in a one-phase microemulsion. The reactions in microemulsion were surprisingly fast compared to reaction in homogeneous, protic liquids such as methanol and ethanol. The rate was independent of the microstructure of the microemulsion; however, the rate was very dependent on the type of surfactant used. When the C12Em surfactant was replaced by a sugar-based surfactant, octyl glucoside, the reaction was much more sluggish. The high reactivity in microemulsions based on C12Em surfactants is belived to be due to a favorable microenvironment in the reaction zone. The reaction is likely to occur within the surfactant palisade layer, where the water activity is relatively low and where the attacking species, the iodide ion, is poorly hydrated and, hence, more nucleophlic than in a protic solvent such as water or methanol. Sugar surfactants become more hydrated than alcohol ethoxylates and the lower reactivity in the microemulsion based on the sugar surfactant is probably due to a higher water activity in the reaction zone.  相似文献   

6.
Biocompatible lipidic formulations: phase behavior and microstructure   总被引:1,自引:0,他引:1  
Biocompatible systems formulated for use in the food, cosmetic, and pharmaceutical fields are characterized. Ternary phase diagrams of mixtures of natural lipids (glycerol trioleate, glycerol monooleate, diglycerol monooleate, and lecithin) and water were investigated by means of optical microscopy in polarized light and by multinuclear NMR spectroscopy. All systems showed a microemulsion region at high oil content and a large area of coexistence of two liquid crystalline (hexagonal and lamellar) phases. 1H and 13C NMR self-diffusion measurements were used to characterize microstructural features of the microemulsions. On water dilution, the two-phase liquid crystalline region transforms into a creamy emulsion area where the droplets of water are stabilized by both the lamellar and the hexagonal phases, as indicated by 2H NMR measurements. Due to the very effective dispersing action of the two liquid crystalline phases, these emulsions show a high stability toward phase separation.  相似文献   

7.
The phase behavior of soybean oil, a nonionic surfactant (ethoxylated monodiglycerides) and an aqueous phase of water containing ethanol, and sucrose was investigated at 35 and 40°C. A minimum concentration of 20 wt% ethanol was required for the formation of isotropic solutions. Addition of sucrose to the aqueous phase decreased the amount of ethanol required to form these solutions. The solubilization mechanism of the oil was investigated by small angle x-ray diffraction and polarized light microscopy. A stable lamellar liquid crystalline phase was formed for a mixture of 75/25 surfactant/sucrose solution (2.5 wt% sucrose). This phase was destabilized with increased concentrations of sucrose and liquid crystalline phases having hexagonal structures were favored at 8.75 wt% sucrose. At a ratio of 55/45 wt% of surfactant/sucrose solution (9 wt% sucrose) hexagonal structures were formed and could be destabilized or destroyed by addition of ethanol. The concept of stabilization and destabilization of liquid crystalline mesophases was applied to the solubilization of triglycerides in aqueous solutions. Two microemulsion regions were identified; oil-in-water (L1) and water-in-oil (L2) in systems containing soybean oil, ethoxylated monodiglycerides, and 20 wt% ethanol solution. At 55/45 wt% surfactant/20 wt% ethanol solution,7.5 wt% of soybean oil was solubilized. Addition of 10, 20, and 30 wt% sucrose, at the same ratio of surfactant to ethanol solution, increased the solubility of the oil to 9, 13.5, and 18 wt% respectively. In addition, the size of the L1 phase increased and moved to the aqueous corner of the phase diagram and the size of the L2 phase decreased.  相似文献   

8.
Water and a geranyl acetate solution of a non-ionic surfactant, a commercial C12EO4, were brought into contact in amounts to give a combination of a lamellar liquid crystal and an oil phase of equal weights at equilibrium and the equilibration transport between the layers was followed by measuring the change in layer heights with time. The initial reaction, lasting approximately two months, transferred surfactant from the oil phase to combine with water to form a birefringent layer initially containing excess water over the fraction in the liquid crystal in equilibrium with both water and oil phase. After this period the composition of the oil phase had reached a level corresponding to equilibrium with both water and a lamellar liquid crystal, while the birefringent phase, although a liquid crystal, still contained less water fraction than required for equilibrium. The final equilibration process of transferring the excess water to the formed liquid crystal was extremely slow with an estimated time to reach equilibrium of several years.  相似文献   

9.
Tween-80–n–butanol–diesel–water microemulsion systems with various surfactant:cosurfactant (S:C) ratio have been reported as a class of alternative diesel fuel from their phase behavior, clouding phenomena, conductivity, turbidity, and inflammation studies. Temperature induced clouding of microemulsion containing 2% brine at an S:C ratio of 1:1 from a suitable turbid zone has been examined to see the stability of the diesel–water microemulsion systems. Regression models have been proposed to understand the impact of various components of the microemulsion on their cloud point (CP) values. Conductivity of the microemulsions at various S:C ratio increases with the volume of brine having two cut points depicting the presence of three microheterogenous phases within the system, whereas turbidity shows a linear increase. Dye-probed investigation of water-rich and oil-rich zones of the microemulsions indicates the involvement of a dynamic mass transfer process within the various zones. The intensities of flames produced during burning of the microemulsions with various O:E:W weight percentages selected from the isotropic regions of the phase diagrams have been estimated using MATLAB image processing method and the impacts of various components on the fuel use of the microemulsions have been analyzed.  相似文献   

10.
Sugar-based microemulsion glass templates   总被引:1,自引:0,他引:1  
Complex fluids comprising of surfactants with water and/or oil form a rich variety of dynamic self-assembled structures, ranging from spherical swollen micelles, viscous rod-like micelles, and bicontinuous microemulsions to ordered liquid crystalline phases. The wide range of practical and specialized applications of complex fluids has made them the subject of intense research for many decades. Here, we demonstrate for the first time how bicontinuous microemulsions containing equal masses of oil and sugar can be driven to the glassy state without phase separation at ambient temperatures by controlled desiccation of sugar-rich microemulsions. The robust nanostructure of these microemulsion glasses allows polymerization of hydrophobic liquid monomers within the interstices of the glassy microemulsion template without macroscopic phase separation. Yet after polymerization, the sugar and surfactant template can be easily removed by dissolution in water.  相似文献   

11.
The partial ternary phase diagram of anionic extended surfactant of alkyl polypropylene oxide sulfate C12(PO)4SO4 alone and combined with the cationic hydrotrope, tetrabutyl ammonium bromide with water and decane were determined under ambient conditions. Middle phase microemulsion was formulated using salinity scans in the dilute region of surfactant/brine/decane. Visual inspection as well as cross polarizer and optical microscopy were used to detect anisotropy. Spinning drop tensiometer was used to measure interfacial tension (IFT). The first ternary phase diagram using the extended surfactant alone showed three one phase regions, the anisotropic lamellar liquid crystalline phase, L α and the isotropic L1 micellar liquid and L3 sponge phase. In the second ternary phase diagram using the extended surfactant combined with tetra butyl ammonium bromide, an isotropic micellar region, L 1, appeared in the diluted area of the phase diagram. Meanwhile the L α phase disappeared completely and the three phase region has a bluish transparent middle phase. Interfacial tension measurements between middle phase and brine, and between decane and brine yielded ultra low values. Calculated IFT values using the characteristic length obtained using De Gennes approximation gave almost half the measured values. The interfacial rigidity was also calculated and compared to values obtained from the literature.  相似文献   

12.
The formation and microstructure of cubic phases were investigated in anionic and cationic surfactant-containing systems at 25 degrees C. In the system sodium dodecyl sulfate(SDS)-dodecyltrimethylammonium bromide(DTAB)-water, mixing of two surfactants shows the phase transition hexagonal phase (H(1))-->surfactant precipitate, accompanied by an obvious decrease in the cross-sectional area per surfactant in the rod micelles of the hexagonal liquid crystal. In the mixed systems brine(A)-dodecane(B)-SDS(C)-DTAB(D)-hexanol(E), the isotropic discontinuous cubic phase is formed from the H(1) phase at a low cationic surfactant weight fraction, Y=D/(C+D), and from the lamellar phase at high Y upon dilution with equal amounts of oil and brine, respectively. The minimum surfactant concentration to form the cubic phase decreases with increases both in cationic surfactant weight fraction Y from 0 to 0.30 and in hexanol weight fraction, W(1)=E/(C+D+E), accordingly. The maximum solubilization for oil of the cubic phase reaches 43 wt% at 14 wt% of mixed surfactants and alcohol. Copyright 2000 Academic Press.  相似文献   

13.
The transparent Winsor IV domain in the phase diagram of the mixtures of emulsifier (Triton X-100 and butanol), oil (kerosene), and water is found to be 34% of the total phase diagram in presence of emulsifier with surfactant:cosurfactant::1:1, and is water dominant. Increase in cosurfactant/surfactant ratio inverts the Winsor IV domain to become oil rich. The plot of conductance of the microemulsions prepared by substituting water by brine against water content depicts the existence of three distinct phases like oil-in-water, bicontinuous, and water-in-oil microemulsion in the phase diagram. The phase contrast micrographs of the mixtures of different compositions in these three different phases reveal the existence of microdroplets of oil dispersed in water and water dispersed in oil. Further, the dynamic light scattering studies of these solutions reveal an inhomogeneity in the size distribution of the droplets. A temperature-induced clouding in the microemulsion domain leading to phase separation has been observed. Additives like glucose, sucrose, and sodium chloride decrease the cloud point (CP), while addition of ammonium thiocyanate increases it. A quantitative relationship of the clouding temperature with the composition of the microemulsion has been established. With increase in oil and emulsifier, the cloud point of the microemulsion increases. The separated phases after the clouding have been used for preconcentration of water-soluble metal ions as well as oil-soluble dyes. The turbid systems on heating led to separation into three isotropic phases which are found to be stable at ambient temperature. The stability of these phases is ascribed to the formation of stable microemulsions by mass transfer from one phase to other.  相似文献   

14.
Abstract

Alcohols and polyols are essential components (in addition to the surfactant, water, and oil) in the formation of U‐type self‐assembled nano‐structures, (sometimes called L‐phases or U‐type microemulsions). These microemulsions are characterized by large isotropic regions ranging from the oil side of the phase diagram up to the aqueous corner. The isotropic oily solutions of reverse micelles (“the concentrates”) can be diluted along some dilution lines with aqueous phase to the “direct micelles” corner via a bicontinuous mesophases (i.e., two structural transitions). This dilution takes place with no phase separations or occurrence of liquid crystalline phases. The structural transitions were determined by viscosity, conductivity, and pulsed gradient spin echo NMR (PGSE NMR), and are not visible to the eye. Two guest nutraceutical molecules (lutein and phytosterols) were solubilized, at their maximum solubilization capacity, in the reversed micellar solutions (L2 phase) and were further diluted with the aqueous phase to the aqueous micellar corner (L1 phase). Structural transitions (for the two types of molecule) from water‐in‐oil to bicontinuous microstructures were induced by the guest molecules. The transitions occurred at an earlier stage of dilution, at a lower water content (20 wt.% aqueous phase), than in the empty (blank) microemulsions (transitions at 30 wt.% aqueous phase). The transitions from the bicontinuous microstructure to the oil‐in‐water microemulsions were retarded by the solubilizates and occurred at later dilution stage at higher aqueous phase contents (50 wt.% aqueous region for empty microemulsion and >60 wt.% for solubilized microemulsion). As a result, the bicontinuous isotropic region, in the presence of the guest molecules, becomes much broader. It seems that the main reason for such “guest‐induced structural transitions” is related to a significant flattening and enhanced rigidity of the interface. The guest molecules of the high molecular volume are occupying high volume fraction of the interface (when the solubilization is maximal).  相似文献   

15.
Microemulsions of nonionic alkyl oligoethyleneoxide (CiEj) surfactants, alkanes, and ethylammonium nitrate (EAN), a room-temperature ionic liquid, have been prepared and characterized. Studies of phase behavior reveal that EAN microemulsions have many features in common with corresponding aqueous systems, the primary difference being that higher surfactant concentrations and longer surfactant tailgroups are required to offset the decreased solvophobicity the surfactant molecules in EAN compared with water. The response of the EAN microemulsions to variation in the length of the alkane, surfactant headgroup, and surfactant tailgroup has been found to parallel that observed in aqueous systems in most instances. EAN microemulsions exhibit a single broad small-angle X-ray scattering peak, like aqueous systems. These are well described by the Teubner-Strey model. A lamellar phase was also observed for surfactants with longer tails at lower temperatures. The scattering peaks of both microemulsion and lamellar phases move to lower wave vector on increasing temperature. This is ascribed to a decrease in the interfacial area of the surfactant layer. Phase behavior, small-angle X-ray scattering, and conductivity experiments have allowed the weakly to strongly structured transition to be identified for EAN systems.  相似文献   

16.
The solubilization and phase equilibria of w/o microemulsions have been shown to be dependent on two phenomenological parameters, namely the spontaneous curvature and elasticity of the interfacial film, when interfacial tension is very low. The spontaneous curvature of an interface is basically determined by the geometric packing of surfactant and cosurfactant molecules at the interface, whereas the interfacial elasticity is related to the energy required to bend the interface. The droplet size and solubilization of microemulsions is mainly determined by the radius of spontaneous curvature, and is further influenced by interfacial elasticity and interdroplet interactions. A w/o microemulsion with a highly curved and relatively rigid interfacial film can exist in equilibrium with excess water at the solubilization limit due to the interfacial bending stress. Increasing the natural radius and fluidity of the interface can increase the droplet size and hence the solubilization in the microemulsion. On the other hand, a w/o microemulsion with a highly fluid interfacial film can exist in equilibrium with an excess oil phase containing a low density of microemulsion droplets due to attractive interdroplet interaction. Increasing the interfacial rigidity and decreasing the natural radius in this case can increase water solubilization in the microemulsion by retarding the phase separation process. Thus, a maximum water solubilization in a w/o microemulsion can be obtained by minimizing both the interfacial bending stress of rigid interfaces and the attractive interdroplet interaction of fluid interfaces at an optimal interfacial curvature and elasticity. The study of phase equilibria of microemulsions can serve as a simple method to evaluate the property of the interface and provide phenomenological guidance for the formulation of microemulsions with maximum solubilization capacity.  相似文献   

17.
Increasing triolein content of oil-in-water microemulsions in the pure C(12)E(4)/water/n-hexadecane/triolein system while maintaining a fixed surfactant concentration and volume fraction of drops raises the temperature of the solubilisation boundary, where excess oil separates, but has only a slight effect on the (higher) cloud point temperature, where excess water appears. Thus, the temperature range of the single-phase microemulsion shrinks and ultimately disappears. When such microemulsions are in equilibrium with excess oil, the hexadecane/triolein ratio is greater in the microemulsion, probably because the larger triolein molecules are unable to penetrate the hydrocarbon chain region of the surfactant films of the microemulsion droplets. Indeed, monolayer studies and calculations based on microemulsion and excess oil compositions indicate that the films have minimal triolein and similar ratios of hexadecane to surfactant. Triolein drops brought into contact with hexadecane-in-water microemulsions first swell as they incorporate hexadecane, then shrink owing to solubilisation. Interfacial tension decreases during this process until it becomes almost constant near 0.01 mN m(-1), suggesting that the drops in the final stages of solubilisation have high hexadecane contents. A microemulsion containing 10 wt% C(12)E(4) and 15 wt% hexadecane was able to remove over 50% of triolein from polyester fabric at 25 degrees C, more than twice that removed by an oil-free solution with the same surfactant concentration in similar experiments.  相似文献   

18.
Hand's method is typically used to empirically calculate the equilibrium compositions for ternary systems between two liquid phases. Oil field application of Hand's method is generally limited to surfactant phase behavior with oil and brine, primarily because the excess oil and brine phases are nearly immiscible. Hand's method is not accurate to represent liquid–vapor equilibrium, especially as oil and gas become miscible. It also requires iterations, which means there is no guarantee of convergence.  相似文献   

19.
Sucrose monoalkanoates (SE) form microemulsions by mixing with lipophilic cosurfactants such as the middle-chain alcohols, or sucrose polyalkanoates. In the case that sucrose monododecanoate is combined with hexanol, a middle-phase microemulsion is produced and coexists with excess water and oil phases at optimum mixing fraction of SE and hexanol. The bicontinuous structure of the microemulsion was confirmed by means of self-diffusion coefficient on NMR measurement.

A larger solubilization capability of oil is attained to a mixed mono- and poly-dodecanoate system than that of the middle-chain alcohol. It is probably due to the location of most of surfactant molecules at the micro-interface inside the microemulsion. In this system, instead of forming a three-phase region, a lamellar liquid crystal intrudes into multi-phase region since the surfactant layer is rather rigid as which was supported by the results of SAXS and ESR measurements. Further addition of a short-chain alcohol such as propanol to the mixed system leads to the flexible interface, as a consequence three-phase microemulsion with large solubilization is formed.  相似文献   

20.
The phase behaviour of the twin-tailed surfactant dioctadecyldimethylammonium bromide with water was studied by DSC, FT-IR, X-ray and polarizing microscope. The phase diagram of DODAB-water system is very similar to that of DODAC-water. The dihydrate is in equilibrium with isotropic solution below 55°C. Above this temperature there is a lamellar liquid crystalline region, in equilibrium with isotropic liquid and solid crystals of DODAB·2H2O, up to 69°C. From 69 to 86°C, the lamellar mesophase is in equilibrium with ‘waxy’ anhydrous DODAB. From 86 to 116°C and very high DODAB content, there is a very narrow region of existence of inverse hexagonal mesophase, in equilibrium via a narrow biphase region with lamellar mesophase. AtT > 116°C an isotropic liquid appears. There seems to exist two different lamellar mesophases, one of them between 10 and 40 wt.% DODAB and the other between 60 and about 97 wt.% DODAB, with a biphase zone between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号