首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
2.
We report the reactivity of three binuclear non-heme Fe(III) compounds, namely [Fe2(bbppnol)(μ-AcO)(H2O)2](ClO4)2 (1), [Fe2(bbppnol)(μ-AcO)2](PF6) (2), and [Fe2(bbppnol)(μ-OH)(Cl)2]·6H2O (3), where H3bbppnol = N,N′-bis(2-hydroxybenzyl)-N,N′-bis(2-methylpyridyl)–1,3-propanediamine-2-ol, toward the hydrolysis of bis-(2,4-dinitrophenyl)phosphate as models for phosphoesterase activity. The synthesis and characterization of the new complexes 1 and 3 was also described. The reactivity differences observed for these complexes show that the accessibility of the substrate to the reaction site is one of the key steps that determinate the hydrolysis efficiency.  相似文献   

3.

Abstract  

Thiacalix[4]arenes are a unique family of polydentate ligands that offer a combination of four soft sulfur atoms together with four hard phenol oxygen atoms for binding to metal ions. In this study, the tetranuclear cadmium (II) complex Cd4II(tca)2·1.5CH2Cl2 (tca4− = tetra-anionic p-tert-butylthiacalix[4]arene) (1) was synthesized by reaction of a deprotonated p-tert-butylthiacalix[4]arene and various CdII salts. The structure of 1 was established by single crystal X-ray diffraction analysis. The neutral complex 1 contains a square arrangement of four cadmium (II) ions sandwiched between two tca4− ligands that have a ‘cone’ conformation similar to that of the free ligand. The absorption and emission properties of the free ligand H4tca and complex 1 have been recorded and explained by DFT calculations of the molecular orbitals and electronic transitions between them.  相似文献   

4.
5.
四氯合铂酸钾分别与邻、间、对磺基苯甲酸在乙腈和水中利用水热合成获得了3个铂的N-(1-亚氨基乙基)乙脒配合物:[Pt(NIA)_2]·(2-sb)·2H_2O(1),[Pt(NIA)_2]·(3-sb)·3H_2O(2)和[Pt(NIA)_2]·(1,4-dsb)·2H_2O(3)(NIA=N-(1-亚氨基乙基)乙脒,2-sb~2-=2-磺基苯甲酸二价阴离子、3-sb~2-=3-磺基苯甲酸二价阴离子、1,4-dsb~2-=1,4-二磺基苯二价阴离子)。合成过程中发生了乙氰三聚以及4-sb~2-转变为1,4-dsb~2-的反应。对配合物进行了元素分析、红外、紫外、荧光、热重和粉末X射线衍射表征,并利用单晶X射线衍射测定了配合物的晶体结构。3个配合物为阳离子-阴离子物种,阳离子为[Pt(NIA)_2]~(2+),中心金属离子四配位平面构型;阴离子与阳离子、水形成氢键,组成一个三维网络结构,但3个配合物的氢键模式不同。配合物在热稳定性、荧光性质上有一定差异。  相似文献   

6.

Abstract  

From extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium H3O+(aq) + 1·Na+(nb) \leftrightarrows \leftrightarrows 1·H3O+ (nb) + Na+ (aq) taking place in the two-phase water–nitrobenzene system (1 = p-tert-butylcalix[4]arenetetrakis(N,N-dimethylacetamide); aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log K ex (H3O+, 1·Na+) = −0.1 ± 0.1. Further, the stability constant of the 1·H3O+ complex in water-saturated nitrobenzene was calculated for a temperature of 25 °C as log β nb (1·H3O+) = 10.9 ± 0.2. By using quantum mechanical DFT calculations, the most probable structure of the 1·H3O+ cationic complex species was derived. In this complex, the hydroxonium ion H3O+ is bound partly to one phenoxy oxygen atom and partly to two carbonyl oxygens of 1 by strong hydrogen bonds and obviously by other electrostatic interactions.  相似文献   

7.
Trinuclear mixed-valence Co(III)-Co(II)-Co(III) complex {CoIII(μ-Sal2MePn)(N3)(μ1,1-N3)}2CoII(H2O)2 (I) was synthesized by the reaction of Co(NO3)2 · 6H2O with the Schiff base ligand H2Sal2MePn condensed from 2,2-dimethylpropylenediamine with salicylaldehyde and characterized by elemental analyses and FT-IR spectroscopy. The molecular structure of I has been determined from single-crystal X-ray diffraction analysis. In this structure, the N3 anions show both terminal and μ1,1-bridging modes. The terminal Co(III) centers exhibit uniform arrangements of the Schiff-base ligand and N3 anions.  相似文献   

8.
四氯合铂酸钾分别与邻、间、对磺基苯甲酸在乙腈和水中利用水热合成获得了3个铂的N-(1-亚氨基乙基)乙脒配合物:[Pt(NIA)2]·(2-sb)·2H2O(1),[Pt(NIA)2]·(3-sb)·3H2O(2)和[Pt(NIA)2]·(1,4-dsb)·2H2O(3)(NIA=N-(1-亚氨基乙基)乙脒,2-sb2-=2-磺基苯甲酸二价阴离子、3-sb2-=3-磺基苯甲酸二价阴离子、1,4-dsb2-=1,4-二磺基苯二价阴离子)。合成过程中发生了乙氰三聚以及4-sb2-转变为1,4-dsb2-的反应。对配合物进行了元素分析、红外、紫外、荧光、热重和粉末X射线衍射表征,并利用单晶X射线衍射测定了配合物的晶体结构。3个配合物为阳离子-阴离子物种,阳离子为[Pt(NIA)2]2+,中心金属离子四配位平面构型;阴离子与阳离子、水形成氢键,组成一个三维网络结构,但3个配合物的氢键模式不同。配合物在热稳定性、荧光性质上有一定差异。  相似文献   

9.
Studies on the magnetic properties of the molecular antiferromagnetic material {N(n-C5H11)4[MnIIFeIII(ox)3]}, carried out by various physical techniques (AC/DC magnetic susceptibility, magnetization, heat capacity measurements and Mössbauer spectroscopy) at low temperatures, have been presented. Different experimental observations complement each other and provide a clue for the observation of an uncompensated magnetization below the Néel temperature and short-range correlations persisting high above TN. It is understood that the honeycomb layered structure of the compound contains non-equivalent magnetic sub-lattices, (MnII–ox–FeIIIA–...) and (MnII–ox–FeIIIB–...), where different responses of the FeIIIA and FeIIIB spin sites towards an external magnetic field might be responsible for the observation of the uncompensated magnetization in this compound at T < TN. The present magnetic system is an S = 5/2 2-D Heisenberg antiferromagnet system with the intralayer exchange parameter J/kB = −3.29 K. A very weak interlayer exchange interaction was anticipated from the spin wave modeling of the magnetic heat capacity for T < 0.5TN. The positive sign of the coupling between the layers has been concluded from the Mössbauer spectrum in the applied magnetic field. Frustration in the magnetic interactions gives rise to the uncompensated magnetic moment in this compound at low temperatures.  相似文献   

10.
Complexes of zinc and iron with N, N2-bis[(1E)-1-(2-pyridyl)ethylidene]ethanedihydrazide (H2L1) and N ,N2-bis[(1E)-1-(2-pyridyl)ethylidene]propanedihydrazide (H2L2) were prepared. ZnII complexes with both ligands have an octahedral geometry. In the complex of ZnII with H2L1, the ligand is coordinated as a tridentate species in the monoanionic form, building two five-membered rings around ZnII. Three remaining coordination sites are occupied by water molecules, and in the outer sphere there is a ClO 4 ion. In the other ZnII complex, the H2L2 ligand is coordinated in the enol form as a tetradenate species, forming a five-memebered, a six-membered and a seven-membered ring, the remaining coordination sites being occupied by water molecules, while in the outer sphere there are two ClO 4 ions. The FeIII complex with H2L2 is a high-spin octahedral complex. The ligand is coordinated in the enol form, in a tetradentate fashion via pyridine and hydrazone nitrogens. The remaining two coordination sites in the complex are occupied by water molecules and a Cl ion, and in the outer sphere there are two Cl anions. The octahedral FeIII complex obtained from the reaction of FeCl3·6H2O and H2L1 in absolute ethanol has the formula [Fe(HL1)Cl2(H2O)]·1.5H2O. However, during coordination of the H2L1 ligand to FeIII in water, oxidative degradation of the side chain (–CO–CO–) and reduction of FeIII to FeII occurs, affording octahedral tris(1-(2-pyridyl)ethylidenehydrazine] ironII perchlorate, as confirmed by X-ray structure analysis.  相似文献   

11.
Two copper(I) complexes [Cu(Cin2bda)2]ClO4 (I) and [Cu(Ncin2bda)2]ClO4 (II) have been prepared by the reaction of the ligands N2,N2′-bis(3-phenylallylidene)biphenyl-2,2′-diamine (L1) and N2,N2′-bis[3-(2-nitrophenyl)allylidene]biphenyl-2,2′-diamine (L2) and copper(I) salt. These compounds were characterized by CHN analyses, 1H NMR, IR, and UV-Vis spectroscopy. The C=N stretching frequency in the copper(I) complexes shows a shift to a lower frequency relative to the free ligand due to the coordination of the nitrogen atoms. The crystal and molecular structure of II was determined by X-ray single-crystal crystallography. The coordination polyhedron about the copper(I) center in the complex is best described as a distorted tetrahedron. A quasireversible redox behavior was observed for complexes I and II. The article is published in the original.  相似文献   

12.
Two CoII complexes, namely {[CoL(MeOH)(μ-OAc)]2Co}·2MeCN·2MeOH (1) and {[CoL(EtOH)(μ-OAc)]2Co}·3EtOH (2) (H2L=3,3′-dimethoxy-2,2′-[(1,3-propylene)dioxybis(nitrilomethylidyne)]diphenol), have been synthesized and characterized by X-ray crystallography. Both complexes contain octahedral coordination geometries, comprising three CoII atoms, two deprotonated bisoxime L2− units in which four μ-phenoxo oxygen atoms form two [CoL(X)] (X = MeOH or EtOH) units, two acetate ligands coordinated to three CoII centers through Co–O–C–O–Co bridges, and coordinated and non-coordinated solvent. Both complexes exhibit 2D supramolecular networks through different intermolecular hydrogen-bonding interactions.  相似文献   

13.
The novel triethylantimony(v) o-amidophenolato (AP-R)SbEt3 (R = i-Pr, 1; R = Me, 2) and catecholato (3,6-DBCat)SbEt3 (3) complexes have been synthesized and characterized by IR, NMR spectroscopy (AP-R is 4,6-di-tert-butyl-N-(2,6-dialkylphenyl)-o-amidophenolate, alkyl = isopropyl (1) or methyl (2); 3,6-DBCat is 3,6-di-tert-butyl-catecholate). Complexes 13 have been obtained by the oxidative addition of corresponding o-iminobenzoquinones or o-benzoquinones to Et3Sb. The addition of 4,6-di-tert-butyl-N-(3,5-di-tert-butyl-2-hydroxyphenyl)-o-iminobenzoquinone to Et3Sb at low temperature gives hexacoordinate [(AP-AP)H]SbEt3 (4) which decomposes slowly in vacuum with the liberation of ethane yielding pentacoordinate complex [(AP-AP)]SbEt2 (5). [(AP-AP)H]2− is O,N,O′-tridentate amino-bis-(3,5-di-tert-butyl-phenolate-2-yl) dianion and [(AP-AP)]3− is amido-bis-(3,5-di-tert-butyl-phenolate-2-yl) trianion. The decomposition of 45 accelerates in the presence of air. o-Amidophenolates 1 and 2 bind molecular oxygen to give spiroendoperoxides Et3Sb[L-iPr]O2 (6) or Et3Sb[L-Me]O2 (7) containing trioxastibolane rings. This reaction proceeds slowly and reaches the equilibrium at 15–20% conversion five times more than for (AP-R)SbPh3 analogues. Molecular structures of 1 and 5 were determined by X-ray analysis.  相似文献   

14.
15.
Abstract

Neutral hexacoordinate phosphorus(V) compounds of a number of univalent bidentate ligands are known.l,2 The silylated forms of tridentate, dianionic Schiff base ligands: N-(2-hydroxyphenyl)salicylideneamine H2LI, N-(4-tert-butyl-2-hydroxyphenyl)-salicylideneamine H2LII, N-(2-hydroxy-4-nitrophenyl)salicylidene-amine H2LIII, and 2,2′-azodiphenol H2LIV gave, with halogeno- and (trifluoromethyl)halogenophosphoranes, neutral hexa-coordinate derivatives with bis-chelate structures. The ligands form bicyclic five- and six-membered chelate rings in a meridional conformation, with two P-O bonds and one N→P donor bond. Hexacoordinate structures were evidenced by high-field 31P NMR chemical shifts (-136 to -148 ppm), characteristic J PF coupling patterns and was further substantiated by crystal structures of Cl3LII (A) and F3PLII (B).  相似文献   

16.
Yuan  Ai-Hua  Lu  Lu-De  Shen  Xiao-Ping  Chen  Li-Zhuang  Yu  Kai-Bei 《Transition Metal Chemistry》2003,28(2):163-167
A cyanide-bridged FeIII–FeII mixed-valence assembly, [FeIII(salen)]2[FeII(CN)5NO] [salen = N,N-ethylenebis(salicylideneiminato)dianion], prepared by slow diffusion of an aqueous solution of Na2[Fe(CN)5NO] · 2H2O and a MeOH solution of [Fe(salen)NO3] in an H tube, has been characterized by X-ray structure analysis, i.r. spectra and magnetic measurements. The product assumes a two-dimensional network structure consisting of pillow-like octanuclear [—FeII—CN—FeIII—NC—]4 units with dimensions: FeII—C = 1.942(7) Å, C—N = 1.139(9) Å, FeIII—N = 2.173(6) Å, FeII—C—N = 178.0(6)°, FeIII—N—C = 163.4(6)°. The FeII—N—O bond angle is linear (180.0°). The variable temperature magnetic susceptibility, measured in the 4.8–300 K range, indicates the presence of a weak intralayer antiferromagnetic interaction and gives an FeIII–FeIII exchange integral of –0.033 cm–1.  相似文献   

17.
Iron mixed-valence complex, (n-C3H7)4N[FeIIFeIII(dto)3] (dto = C2O2S2) shows a new-type of phase transition coupled with spin and charge around 120 K, where the charge transfer between the FeII and FeIII sites occurs reversibly, and shows the ferromagnetic transition at 7 K. To investigate the magnetic structure and its dimensionality of (n-C3H7)4N[FeIIFeIII(dto)3], we have synthesized a mixed crystal system, (n-C3H7)4N[FeII1?xZnIIxFeIII(dto)3], and measured its magnetic properties. In this system, the magnetic moment is reduced with increasing of Zn ratio. Moreover, the ferromagnetic interaction changes to the antiferromagnetic one and the remnant magnetization disappears between x = 0.48 and 0.96, while the charge transfer between the FeII and FeIII sites disappears above x = 0.26. In this paper, we present the magnetic dilution effect on the charge transfer phase transition and the ferromagnetic transition by means of magnetic susceptibility measurement and 57Fe Mössbauer spectroscopy.  相似文献   

18.
Two new Fischer-type carbene-containing trinuclear transition-metal clusters: (μ 3-S)Co3(CO)7[μ, η 2-SCNEt2] 1 and CoRu2(CO)9[μ 3, η 2-SCNEt2] 2 were obtained by the reaction of tris(N,N-diethyldithiocarbamato)cobalt with Co2(CO)8 and Ru3(CO)12. These clusters contain thiocarboxamido ligand in different coordination modes. The thiocarboxamido ligand served as monometalated or dimetalated sulfur(diethy1amino) carbene ligand in these clusters. Clusters 1 and 2 were characterized by IR, 1H NMR, and single-crystal X-ray diffraction.  相似文献   

19.
The octahedral complex, [CoIII(HL)]·9H2O (H4L = (1,8)-bis(2-hydroxybenzamido)-3,6-diazaoctane) incorporating bis carboxamido-N-, bis sec-NH, phenolate, and phenol coordination has been synthesized and characterized by analytical, NMR (1H, 13C), e.s.i.-Mass, UV–vis, i.r., and Raman spectroscopy. The formation of the complex has also been confirmed by its single crystal X-ray structure. The cyclic voltammetry of the sample in DMF ([TEAP] = 0.1 mol dm−3, TEAP = tetraethylammonium perchlorate) displayed irreversible redox processes, [CoIII(HL)] → [CoIV(HL)]+ and [CoIII(HL)] → [CoII(HL)] at 0.41 and −1.09 V (versus SCE), respectively. A slow and H+ mediated isomerisation was observed for the protonated complex, [CoIII(H2L)]+ (pK = 3.5, 25 °C, I = 0.5 mol dm−3). H2Asc was an efficient reductant for the complex and the reaction involved outer sphere mechanism; the propensity of different species for intra molecular reduction followed the sequence: [{[CoIII(HL)],(H2Asc)}–H] <<< {[CoIII(H2L)],(H2Asc)}+ < {[CoIII(HL)],(H2Asc)}. A low value (ca. 3.7 × 10−10 dm3 mol−1 s−1, 25 °C, I = 0.5 mol dm−3) for the self exchange rate constant of the couple [CoIII(HL)]/[CoII(HL)] indicated that the ligand HL3− with amido (N-) donor offers substantial stability to the CoIII state. HSO3 and [CoIII(HL)] formed an outer sphere complex {[CoIII(HL)],(HSO3)}, which was slowly transformed to an inner sphere S-bonded sulfito complex, [CoIII(H2L)(HSO3)] and the latter was inert to reduction by external sulfite but underwent intramolecular SIV → CoIII electron transfer very slowly. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
The interactions of potentially dinucleating bridging functionalities (I–VI) with the ruthenium-bis(bypyridine) precursor [RuII(bpy)2(EtOH)2]2+have been explored. The bridging functionsI,II andVI directly result in the expected dinuclear complexes of the type [(bpy)2RuIILnRuII(bpy)2]z+ (1,2,7 and 8) (n = 0,z =4 andn = -2,z = 2). The bridging ligandIII undergoes N-N or N-C bond cleavage reaction on coordination to the RuII(bpy)2 core which eventually yields a mononuclear complex of the type [(bpy)2RuII(L)]+,3, where L =-OC6H3(R)C(R′)=N-H. However, the electrogenerated mononuclear ruthenium(III) congener, 3+in acetonitrile dimerises to [(bpy)2RuIII {-OC6H3(R)C(R′)=N-N=(R′)C(R)C6H3O-}RuIII(bpy)2]4+ (4). In the presence of a slight amount of water content in the acetonitrile solvent the dimeric species (4) reduces back to the starting ruthenium(II) monomer (3). The preformed bridging ligandIV undergoes multiple transformations on coordination to the Ru(bpy)2 core, such as hydrolysis of the imine groups ofIV followed by intermolecular head-to-tail oxidative coupling of the resultant amino phenol moieties, which in turn results in a new class of dimeric complex of the type [(bpy)2RuII -OC6H4-N=C6H3(=NH)O-RuII(bpy)2]2+ (5). In5, the bridging ligand comprises of twoN,O chelating binding sites each formally in the semiquinone level and there is ap-benzoquinonediimine bridge between the metal centres. In complex6, the preformed bridging ligand, 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,2-dihydro-1,2,4,5-tetrazine, H2L (V) undergoes oxidative dehydrogenation to aromatic tetrazine based bridging unit, 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,2,4,5-tetrazine, L. The detailed spectroelectrochemical aspects of the complexes have been studied in order to understand the role of the bridging units towards the intermetallic electronic coupling in the dinuclear complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号