首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
This study reports the first experimental demonstration that two light pulses were made motionless and interacted with each other through a medium. The scheme with motionless light pulses maximizes the interaction time and can achieve a considerable efficiency even below single-photon level. To demonstrate the enhancement of optical nonlinear efficiency, the experiment in this study used the process of one optical pulse switched by another based on the effect of electromagnetically induced transparency. Moving light pulses activate switching at an energy per area of 2 photons per atomic absorption cross section as discussed in [Phys. Rev. Lett. 82, 4611 (1999)]. This study demonstrates that motionless light pulses can activate switching at 0.56 photons per atomic absorption cross section, and that the light level can be further reduced by increasing the optical density of the medium. The result of this work enters a new regime of low-light physics.  相似文献   

2.
The possibility of storage of quantum information with photons is studied in the case of resonant transitions via many close lying exciton levels in a solid with impurity -atoms. The upper levels of the impurity atom form resonant Fano states, similar to the autoionization atomic states, due to the configuration interaction with the continuum of the exciton band. In this case slowing of light pulses is shown to be realistic, in the presence of the control field, down to the group velocity much lower than that in vacuum. The possibility of storage and reconstruction of a quantum pulse is studied in the case of the instantaneous switching on/off of the control field. It is shown that the signal quantum pulse cannot be stored undistorted for differing values of Fano parameters and for non-zero two-photon detuning and decay rate between the lower levels (decoherence). However, for small difference of the Fano parameters and for small values of the two-photon detuning and the decoherence there is no distortion in the case where the length of the pulse is much longer than the linear absorption (amplification) length, so the shape and quantum state of the light pulse can be restored.  相似文献   

3.
Wang CY  Chen YF  Lin SC  Lin WH  Kuan PC  Yu IA 《Optics letters》2006,31(15):2350-2352
We propose an all-optical switch that utilizes the technique of storage and retrieval of light pulses. A single photon (probe pulse) switched by another (switching pulse) is feasible, and the on-off ratio can be as large as 10 dB. We have experimentally demonstrated that the energy of the retrieved probe pulse is reduced to about 10% because of the presence of a switching pulse with an energy per unit area of one photon per lambda(2)/(2pi). The achieved result does not depend on the coupling intensity, the atomic optical density, or the width and shape of the switching pulse.  相似文献   

4.
We investigate the dynamical behavior of the dispersion and the absorption in a V-type three level atomic system. It is shown that in the presence of decay-induced interference the probe dispersion and absorption are phase dependent. We find that an incoherent pumping field provides an additional control parameter for switching the group velocity of a light pulse. The required switching times for switching the group velocity of a probe field from subluminal to superluminal pulse propagation is then discussed.  相似文献   

5.
This paper reviews recent efforts to realize a high‐efficiency memory for optical pulses using slow and stored light based on electromagnetically induced transparency (EIT) in ensembles of warm atoms in vapor cells. After a brief summary of basic continuous‐wave and dynamic EIT properties, studies using weak classical signal pulses in optically dense coherent media are discussed, including optimization strategies for stored light efficiency and pulse‐shape control, and modification of EIT and slow/stored light spectral properties due to atomic motion. Quantum memory demonstrations using both single photons and pulses of squeezed light are then reviewed. Finally a brief comparison with other approaches is presented.  相似文献   

6.
Yu You 《中国物理 B》2021,30(8):84207-084207
We present a scheme for the quantum storage of single photons using electromagnetically induced transparency (EIT) in a low-finesse optical cavity, assisted by state-selected spontaneous atomic emission. Mediated by the dark mode of cavity EIT, the destructive quantum interference between the cavity input-output channel and state-selected atomic spontaneous emission leads to strong absorption of single photons with unknown arrival time and pulse shapes. We discuss the application of this phenomenon to photon counting using stored light.  相似文献   

7.
All-optical gain switching of an erbium-doped fiber amplifier located up to 50 km away from the signal and control lasers is demonstrated. The amplifier is deactivated by optical control pulses within the amplifier bandwidth that strongly saturate the gain at the signal Wavelength. Fall times are approximately equal to the control pulse duration of 21 ns. From 25 km, a maximum extinction ratio of 16 dB is demonstrated with the signal at 1527 nm and the control pulse at 1554 nm. The dynamic range for remote switching is limited by a stimulated Raman scattering of the control pulses.  相似文献   

8.
We experimentally study the controllable generation of a beating signal using stored light pulses based on electromagnetically induced transparency(EIT) in a solid medium. The beating signal relies on an asymmetric procedure of light storage and retrieval. After storing the probe pulse into the spin coherence under the EIT condition, two-color control fields with opposite detunings instead of the initial control field are used to scatter the stored spin coherence. The controllable beating signal is generated due to alternative constructive and destructive interferences in the retrieved signal intensities. The beating of the two-color control fields is mapped into the beating of weak probe fields by using atomic spin coherence. This beating signal will be important in precise atomic spectroscopy and fast quantum limited measurements.  相似文献   

9.
Chen YF  Tsai ZH  Liu YC  Yu IA 《Optics letters》2005,30(23):3207-3209
We report an experimental demonstration of low-light-level photon switching by quantum interference in laser-cooled 87Rb atoms. A resonant probe pulse with an energy per unit area of one photon per lambda2/2pi propagates through the optically thick atoms. Its energy transmittance is greater than 63%, or a loss of less than e(-1), because of the effect of electromagnetically induced transparency. In the presence of a switching pulse with an energy per unit area of 1.4 photons per lambda2/2pi, the energy transmittance of the same probe pulse becomes less than 37%, or e(-1). This substantial reduction of probe transmittance caused by switching photons may lead to potential applications in single-photon-level nonlinear optics and manipulation of quantum information.  相似文献   

10.
Rong Yu  Jiahua Li 《Optics Communications》2011,284(12):2930-2936
A scheme of five-level double-ladder-type atomic system is proposed with the aim of implementing dual-channel all-optical switching. Two transitions in the five-level atomic medium independently interact with the two orthogonally (circularly) polarized components from a weak linearly-polarized probe beam, while two other atomic transitions are coherently driven by a control beam and a switching signal beam. We demonstrate that the switching on/off of two orthogonally polarized beams at different frequencies can be achieved by adjusting the magnitude of the external magnetic field, which expands the frequency range of an optical signal switching operation and may improve its practicability.  相似文献   

11.
We study nonlinear optical behaviors in pulse propagation through a medium consisting of four-level cascade-type cold atoms, where a radio-frequency (RF) field couples upper two-folded levels and double-dark resonances (DDRs) can arise. By numerically solving the coupled Bloch-Maxwell equations for atom and field simultaneously in space and time, we demonstrate dynamic control of light propagation and optical switching in such a four-level atomic medium. The proposed scheme may have potential applications in the design of optical switching and optical storage devices.  相似文献   

12.
We investigate the propagation characteristics of the narrowband Stokes/anti-Stokes photons in cold atomic vapor. The four-wave mixing process results from parametric amplification of the anti-Stokes photons. We find that the process of parametric amplification is very similar to the light pulse propagating through an anomalous dispersion gain medium. Finally, we obtain the general solutions of the Glauber biphoton correlation functions, which are in good agreement with the experiment results.  相似文献   

13.
We have investigated the optical switching in a five-level atom in a novel configuration of electromagnetically induced transparency. This N-tripod type level scheme combines the attractive features of cross-phase modulation appearing in N-type atoms with the ability to slow light pulses associated with tripod atoms. The addition of a new driving field to the usual tripod configuration allows to control the double-dark resonances which appear in the four-level tripod system and thus enables to manipulate the probe absorption and dispersion properties. We have studied the temporal dynamics of two pulses, a probe pulse and a switch propagating pulse through the sample. In the presence of the switching field, a deep in the absorption at resonance due to one-photon electromagnetically induced transparency appears and the atomic system is transparent to the probe field, which propagates at a very small group velocity. By tuning the fields, one of the usual double-dark resonances appearing in tripod system can be controlled (Stark-shifted) and the medium, which is transparent in the absence of the control field, will become highly absorptive. The linear and cross-phase modulation susceptibilities have been calculated and we predict the possibility to realize two-photon switching and giant cross-phase modulation. Finally we address the question about the generation of an entangled coherent state and we show that the giant cross-phase modulation provided by this N-tripod atomic system can be used for realizing polarization quantum phase gates.  相似文献   

14.
An all-optical modulation of interband-resonant light (near-infrared signal light: 800 nm) by intersubband-resonant light (mid-infrared control light: 4–7 μm) in n-doped AlGaAs/GaAs multiple quantum wells is investigated by two-color femtosecond pump–probe experiments at room temperature. The modulation of the near-infrared signal light with an ultrafast recovery as short as 1 ps is successfully observed when the quantum wells are pumped by the mid-infrared control light pulse (4 fJ/μm2). The dependence of the modulation depth on the wavelength of the control light is also measured, which is shown to be consistent with the intersubband absorption spectrum of the quantum wells. The results indicate that the utilization of the intersubband transition is promising for the ultrafast all-optical modulation and switching.  相似文献   

15.
We have demonstrated efficient production of triggered single photons by coupling a single semiconductor quantum dot to a three-dimensionally confined optical mode in a micropost microcavity. The efficiency of emitting single photons into a single-mode traveling wave is approximately 38%, which is nearly 2 orders of magnitude higher than for a quantum dot in bulk semiconductor material. At the same time, the probability of having more than one photon in a given pulse is reduced by a factor of 7 as compared to light with Poissonian photon statistics.  相似文献   

16.
We experimentally demonstrate a low-light-level cross-phase-modulation (XPM) scheme based on the light-storage technique in laser-cooled 87Rb atoms. The proposed scheme can achieve a similar phase shift and has the same figure of merit as one using static electromagnetically induced transparency under the constant coupling field. Nevertheless, the phase shift and the energy loss of a probe pulse induced by a signal pulse are neither influenced by the coupling intensity nor by the atomic optical density in the light-storage XPM scheme. This scheme enhances the flexibility of the experiment and makes possible conditional phase shifts on the order of pi with single photons.  相似文献   

17.
The long-range interaction between Rydberg-excited atoms endows a medium with large optical nonlinearity. Here, we demonstrate an optical switch to operate on a single photon from an entangled photon pair under a Rydberg electromagnetically induced transparency configuration. With the presence of the Rydberg blockade effect, we switch on a gate field to make the atomic medium nontransparent thereby absorbing the single photon emitted from another atomic ensemble via the spontaneous fourwave mixing process. In contrast to the case without a gate field, more than 50% of the photons sent to the switch are blocked,and finally achieve an effective single-photon switch. There are on average 1-2 gate photons per effective blockade sphere in one gate pulse. This switching effect on a single entangled photon depends on the principal quantum number and the photon number of the gate field. Our experimental progress is significant in the quantum information process especially in controlling the interaction between Rydberg atoms and entangled photon pairs.  相似文献   

18.
We experimentally study the generation and storage of double slow light pulses in a Pr3+:Y2SiO5 crystal. Under electromagnetically induced transparency, a single signal pulse is stored in the spin coherence of the crystal. By simultaneously switching on two control fields to recall the stored information, the spin coherence is converted into two slow light pulses with distinct frequencies. Furthermore, the storage and controlled retrieval of double slow light pulses are obtained by manipulating the control fields. This study of double slow light pulses may have practical applications in information processing and all-optical networks. vspace2mm  相似文献   

19.
1IntroductionInrecentyears,thepotentialofreversesaturableabsorption(RSA)materialsinopticallimitingandopticalswitchinghavegrad...  相似文献   

20.
温亮生  伍剑  林金桐 《光学学报》2003,23(6):56-661
讨论了半导体光放大器中的带间效应,及载流子热效应、谱烧孔效应、双光子吸收以及超快非线性折射等带内效应对半导体光放大器的动态特性的影响,讨论了两种情况:1)保持控制光波长不变而改变信号光频率,2)保持控制光和信号光频率相同而同时改变它们的频率下半导体光放大器的增益、相位动态特性以及太赫兹光非对称解复用器的开关窗口特性。数值结果表明,为了得到较为平坦而窄的开关窗口,控制光波长应与信号光波长相同,且其与半导体光放大器增益谱中心波长的差值应该大一些。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号