首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The aim of the present paper is to study flow and heat transfer characteristics of a viscous Casson thin film flow over an unsteady stretching sheet subject to variable heat flux in the presence of slip velocity condition and viscous dissipation. The governing equations are partial differential equations. They are reduced to a set of highly nonlinear ordinary differential equations by suitable similarity transformations. The resulting similarity equations are solved numerically with a shooting method. Comparisons with previous works are made, and the results are found to be in excellent agreement. In the present work, the effects of the unsteadiness parameter, the Casson parameter, the Eckert number, the slip velocity parameter, and the Prandtl number on flow and heat transfer characteristics are discussed. Also, the local skin-friction coefficient and the local Nusselt number at the stretching sheet are computed and discussed.  相似文献   

2.
An analysis is presented to describe the boundary layer flow and heat transfer towards a porous exponential stretching sheet. Velocity and thermal slips are considered instead of no-slip conditions at the boundary. Thermal radiation term is incorporated in the temperature equation. Similarity transformations are used to convert the partial differential equations corresponding to the momentum and heat equations into highly non-linear ordinary differential equations. Numerical solutions of these equations are obtained by shooting method. It is found that the fluid velocity and temperature decrease with increasing slip parameter. Temperature is found to decrease with an increase of thermal slip parameter. Thermal radiation enhances the effective thermal diffusivity and the temperature rises.  相似文献   

3.
A three-dimensional flow of a magnetohydrodynamic Casson fluid over an unsteady stretching surface placed into a porous medium is examined. Similarity transformations are used to convert time-dependent partial differential equations into nonlinear ordinary differential equations. The transformed equations are then solved analytically by the homotopy analysis method and numerically by the shooting technique combined with the Runge–Kutta–Fehlberg method. The results obtained by both methods are compared with available reported data. The effects of the Casson fluid parameter, magnetic field parameter, and unsteadiness parameter on the velocity and local skin friction coefficients are discussed in detail.  相似文献   

4.
The boundary layer flow and mass transfer toward an exponentially stretching porous sheet are analyzed in this paper. Velocity slip is considered instead of the no-slip condition on the boundary. Self-similar equations are obtained by using similarity transformations. Numerical solutions of these equations are obtained by the shooting method. It is found that the fluid velocity and concentration decrease with increasing slip parameter. The fluid velocity decreases with increasing suction parameter.  相似文献   

5.
This paper considers the steady mixed convection boundary layer flow of a viscous and incompressible fluid near the stagnation-point on a vertical surface with the slip effect at the boundary. The temperature of the sheet and the velocity of the external flow are assumed to vary linearly with the distance from the stagnation-point. The governing partial differential equations are first transformed into a system of ordinary differential equations, which are then solved numerically by a shooting method. The features of the flow and heat transfer characteristics for different values of the governing parameters are analyzed and discussed. Both assisting and opposing flows are considered. The results indicate that for the opposing flow, the dual solutions exist in a certain range of the buoyancy parameter, while for the assisting flow, the solution is unique. In general, the velocity slip increases the heat transfer rate at the surface, while the thermal slip decreases it.  相似文献   

6.
In this paper, viscous flow and heat transfer over an unsteady stretching surface is investigated with slip conditions. A system of non-linear partial differential equations is derived and transformed to ordinary differential equations with help of similarity transformations. Numerical computations are carried out for different values of the parameters involved and the analysis of the results obtained shows that the flow field is influenced appreciably by the unsteadiness, and the velocity slip parameter. With increasing values of the unsteadiness parameter, fluid velocity and the temperature are found to decrease in both the presence and absence of slip at the boundary. Fluid velocity decreases due to increasing values of the velocity slip parameter resulting in an increase in the temperature field. Skin-friction decreases with the velocity slip parameter whereas it increases with unsteadiness parameter. The rate of heat transfer decreases with the velocity slip parameter while increases with unsteadiness parameter. Same feature is also noticed for thermal slip parameter.  相似文献   

7.
The prime objective of this article is to study the axisymmetric flow and heat transfer of the Carreau fluid over a radially stretching sheet. The Carreau constitutive model is used to discuss the characteristics of both shear-thinning and shear-thickening fluids. The momentum equations for the two-dimensional flow field are first modeled for the Carreau fluid with the aid of the boundary layer approximations. The essential equations of the problem are reduced to a set of nonlinear ordinary differential equations by using local similarity transformations. Numerical solutions of the governing differential equations are obtained for the velocity and temperature fields by using the fifth-order Runge–Kutta method along with the shooting technique. These solutions are obtained for various values of physical parameters. The results indicate substantial reduction of the flow velocity as well as the thermal boundary layer thickness for the shear-thinning fluid with an increase in the Weissenberg number, and the opposite behavior is noted for the shear-thickening fluid. Numerical results are validated by comparisons with already published results.  相似文献   

8.
A steady boundary layer flow of a non-Newtonian Casson fluid over a power-law stretching sheet is investigated. A self-similar form of the governing equation is obtained, and numerical solutions are found for various values of the governing parameters. The solutions depend on the fluid material parameter. Dual solutions are obtained for some particular range of these parameters. The fluid velocity is found to decrease as the power-law stretching parameter β in the rheological Casson equation increases. At large values of β, the skin friction coefficient and the velocity profile across the boundary layer for the Casson fluid tend to those for the Newtonian fluid.  相似文献   

9.
The boundary layer flow of a nanofluid past a stretching/shrinking sheet with hydrodynamic and thermal slip boundary conditions is studied. Numerical solutions to the governing equations are obtained using a shooting method. The results are found for the skin friction coefficient, the local Nusselt number, and the local Sherwood number as well as the velocity, temperature, and concentration profiles for some values of the velocity slip parameter, thermal slip parameter, stretching/shrinking parameter, thermophoresis parameter, and Brownian motion parameter. The results show that the local Nusselt number, which represents the heat transfer rate, is lower for higher values of thermal slip parameter, thermophoresis parameter, and Brownian motion parameter.  相似文献   

10.
This study presents an analysis of the axisymmetric flow of a non-Newtonian fluid over a radially stretching sheet. The momentum equations for two-dimensional flow are first modeled for Sisko fluid constitutive model, which is a combination of power-law and Newtonian fluids. The general momentum equations are then simplified by invoking the boundary layer analysis. Then a non-linear ordinary differential equation governing the axisymmetric boundary layer flow of Sisko fluid over a radially stretching sheet is obtained by introducing new suitable similarity transformations. The resulting non-linear ordinary differential equation is solved analytically via the homotopy analysis method (HAM). Closed form exact solution is then also obtained for the cases n=0 and 1. Analytical results are presented for the velocity profiles for some values of governing parameters such as power-law index, material parameter and stretching parameter. In addition, the local skin friction coefficient for several sets of the values of physical parameter is tabulated and analyzed. It is shown that the results presented in this study for the axisymmetric flow over a radially non-linear stretching sheet of Sisko fluid are quite general so that the corresponding results for the Newtonian fluid and the power-law fluid can be obtained as two limiting cases.  相似文献   

11.
Taking into account the slip flow effects, Newtonian heating, and thermal radiation, two-dimensional magnetohydrodynamic (MHD) flows and heat transfer past a permeable stretching sheet are investigated numerically. We use one parameter group transformation to develop similarity transformation. By using the similarity transformation, we transform the governing boundary layer equations along with the boundary conditions into ordinary differential equations with relevant boundary conditions. The obtained ordinary differential equations are solved with the fourth-fifth order Runge-Kutta- Fehlberg method using MAPLE 13. The present paper is compared with a published one. Good agreement is obtained. Numerical results for dimensionless velocity, temperature distributions, skin friction factor, and heat transfer rates are discussed for various values of controlling parameters.  相似文献   

12.
The aim of the present study is to investigate the flow of the Casson fluid by an inclined stretching cylinder. A heat transfer analysis is carried out in the presence of thermal radiation and viscous dissipation effects. The temperature dependent thermal conductivity of the Casson fluid is considered. The relevant equations are first simplified under usual boundary layer assumptions, and then transformed into ordinary differential equations by suitable transformations. The transformed ordinary differential equations are computed for the series solutions of velocity and temperature. A convergence analysis is shown explicitly. Velocity and temperature fields are discussed for different physical parameters by graphs and numerical values. It is found that the velocity decreases with the increase in the angle of inclination while increases with the increase in the mixed convection parameter. The enhancement in the thermal conductivity and radiation effects corresponds to a higher fluid temperature. It is also found that heat transfer is more pronounced in a cylinder when it is compared with a flat plate. The thermal boundary layer thickness increases with the increase in the Eckert number. The radiation and variable thermal conductivity decreases the heat transfer rate at the surface.  相似文献   

13.
The flow and heat transfer of a non-Newtonian power-law fluid over a non-linearly stretching surface has been studied numerically under conditions of constant heat flux and thermal radiation and evaluated for the effect of wall slip. The governing partial differential equations are transformed into a set of coupled non-linear ordinary differential equations which are using appropriate boundary conditions for various physical parameters. The remaining set of ordinary differential equations is solved numerically by fourth-order Runge–Kutta method using the shooting technique. The effects of the viscosity, the slip velocity, the radiation parameter, power-law index, and the Prandtl number on the flow and temperature profiles are presented. Moreover, the local skin friction and Nusselt numbers are presented. Comparison of numerical results is made with the earlier published results under limiting cases.  相似文献   

14.
An unsteady magnetohydrodynamic (MHD) boundary layer flow over a shrinking permeable sheet embedded in a moving viscous electrically conducting fluid is investigated both analytically and numerically. The velocity slip at the solid surface is taken into account in the boundary conditions. A novel analytical method named DTMBF is proposed and used to get the approximate analytical solutions to the nonlinear governing equation along with the boundary conditions at infinity. All analytical results are compared with those obtained by a numerical method. The comparison shows good agreement, which validates the accuracy of the DTM-BF method. Moreover, the existence ranges of the dual solutions and the unique solution for various parameters are obtained. The effects of the velocity slip parameter, the unsteadiness parameter, the magnetic parameter, the suction/injection parameter, and the velocity ratio parameter on the skin friction, the unique velocity, and the dual velocity profiles are explored, respectively.  相似文献   

15.
The boundary layer flow and heat transfer of a fluid through a porous medium towards a stretching sheet in presence of heat generation or absorption is considered in this analysis. Fluid viscosity is assumed to vary as a linear function of temperature. The symmetry groups admitted by the corresponding boundary value problem are obtained by using a special form of Lie group transformations viz. scaling group of transformations. These transformations are used to convert the partial differential equations corresponding to the momentum and the energy equations into highly non-linear ordinary differential equations. Numerical solutions of these equations are obtained by shooting method. It is found that the horizontal velocity decreases with increasing temperature-dependent fluid viscosity parameter up to the crossing-over point but increases after that point and the temperature decreases in this case. With the increase of permeability parameter of the porous medium the fluid velocity decreases but the temperature increases at a particular point of the sheet. Effects of Prandtl number on the velocity boundary layer and on the thermal boundary layer are studied and plotted.  相似文献   

16.
This investigation deals with the effects of slip, magnetic field, and non- Newtonian flow parameters on the flow and heat transfer of an incompressible, electrically conducting fourth-grade fluid past an infinite porous plate. The heat transfer analysis is carried out for two heating processes. The system of highly non-linear differential equations is solved by the shooting method with the fourth-order Runge-Kutta method for moderate values of the parameters. The effective Broyden technique is adopted in order to improve the initial guesses and to satisfy the boundary conditions at infinity. An exceptional cross-over is obtained in the velocity profile in the presence of slip. The fourth-grade fluid parameter is found to increase the momentum boundary layer thickness, whereas the slip parameter substantially decreases it. Similarly, the non-Newtonian fluid parameters and the slip have opposite effects on the thermal boundary layer thickness.  相似文献   

17.
A mixed convection flow of a third-grade fluid near the orthogonal stagnation point on a vertical surface with slip and viscous dissipation effects is investigated. The governing partial differential equations for the third-grade fluid are converted into a system of nonlinear ordinary differential equations by using a similarity transformation. The effects of various parameters, including the Weissenberg number, third-grade parameter, local Reynolds number, Prandtl number, Eckert number, mixed convection parameter, velocity slip, and thermal slip on the velocity and temperature profiles, local skin friction coefficient, and local Nusselt number are discussed.  相似文献   

18.
Melting heat transfer in the boundary layer flow of a couple stress fluid over a stretching surface is investigated. The developed differential equations are solved for homotopic solutions. It is observed that the velocity and the boundary layer thickness are decreasing functions of the couple stress fluid parameter. However, the temperature and surface heat transfer increase when the values of the couple stress fluid parameter increase. The velocity and temperature fields increase with an increase in the melting process of the stretching sheet.  相似文献   

19.
This article presents a numerical solution for the flow of a Newtonian fluid over an impermeable stretching sheet embedded in a porous medium with the power law surface velocity and variable thickness in the presence of thermal radiation. The flow is caused by non-linear stretching of a sheet. Thermal conductivity of the fluid is assumed to vary linearly with temperature. The governing partial differential equations (PDEs) are transformed into a system of coupled non-linear ordinary differential equations (ODEs) with appropriate boundary conditions for various physical parameters. The remaining system of ODEs is solved numerically using a differential transformation method (DTM). The effects of the porous parameter, the wall thickness parameter, the radiation parameter, the thermal conductivity parameter, and the Prandtl number on the flow and temperature profiles are presented. Moreover, the local skin-friction and the Nusselt numbers are presented. Comparison of the obtained numerical results is made with previously published results in some special cases, with good agreement. The results obtained in this paper confirm the idea that DTM is a powerful mathematical tool and can be applied to a large class of linear and non-linear problems in different fields of science and engineering.  相似文献   

20.
This article concerns with a steady two-dimensional flow of an electrically conducting incompressible fluid over a vertical stretching sheet. The flow is permeated by a uniform transverse magnetic field. The fluid viscosity is assumed to vary as a linear function of temperature. A scaling group of transformations is applied to the governing equations. The system remains invariant due to some relations among the parameters of the transformations. After finding three absolute invariants, a third-order ordinary differential equation corresponding to the momentum equation, and two second-order ordinary differential equations corresponding to energy and diffusion equations are derived. The equations along with the boundary conditions are solved numerically. It is found that the decrease in the temperature-dependent fluid viscosity makes the velocity to decrease with the increasing distance of the stretching sheet. At a particular point of the sheet, the fluid velocity decreases with the decreasing viscosity but the temperature increases in this case. Impact of thermophoresis particle deposition in the presence of temperature-dependent fluid viscosity plays an important role on the concentration boundary layer. The results, thus, obtained are presented graphically and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号