Transparent conducting zirconium-doped zinc oxide (ZnO:Zr) films were firstly deposited on polyethylene terephthalate (PET) substrates with ZnO buffer layers by DC magnetron sputtering at room temperature. Dependence of physical properties of ZnO:Zr films on deposition pressure was systematically studied. All the deposited films were polycrystalline and (1 0 0) oriented. When deposition pressure increases from 1 to 2.5 Pa, the crystallinity of the films improves and the resistivity decreases. While deposition pressure increases from 2.5 to 3.5 Pa, the crystallinity of the films deteriorates and the resistivity increases. The lowest resistivity of 1.8 × 10−3 Ω cm was obtained for the films deposited at the optimum deposition pressure of 2.5 Pa. All the films present a high transmittance of above 86% in the wavelength range of the visible spectrum. 相似文献
The nanocrystal thin films of zinc oxide doped by Al (ZnO:Al) were deposited by dc reactive magnetron sputtering on the glass substrates, in the pressure range of 33-51 Pa. From the X-ray diffraction patterns, the nanocrystalline structure of ZnO:Al films and the grain size were determined. The optical transmission spectra depend from the sputtering pressure, but their average value was 90% in the range from 33 Pa to 47 Pa. Also, the sputtering pressure changes the optical band gap of ZnO:Al films, which is highest for films deposited at 37 Pa, 40 Pa and 47 Pa. The obtained films at room temperature have a sheet resistance of 190 Ω/cm2 which increases with time, but the films annealed at temperature of 400 °C have constant resistance. The surface morphology of the films was studied by Scanning electron microscopy. XPS spectra showed that the peak of O1s of the as-deposited films is smaller than the peak of the annealed ZnO:Al films. 相似文献
Zinc oxide thin films were deposited by radio frequency magnetron sputtering at room temperature using a metallic zinc target in a gas mixture of argon and oxygen. Plasma power, oxygen /argon gas ratio, gas pressure, and substrate temperature were varied, and an experimental design method was used to optimize these deposition parameters by considering their interdependence. Crystalline structures and film stresses were examined. Post-deposition rapid thermal annealing was also carried out to observe its effects on the film properties. Statistical analysis was then used to find the optimal sputtering conditions. Results indicated that plasma power and gas pressure have the largest effects on film crystallization and stress and that postdeposition annealing can be used to improve the quality of the film properties. 相似文献
Thin films of zinc (Zn) were deposited onto glass substrates (maintained at room temperature) by thermal evaporation under vacuum. The metallic zinc films were submitted to thermal oxidation in air at 670 K and 770 K, respectively, for 5–90 min, in order to obtain zinc oxide (ZnO) thin films. X-ray diffraction patterns revealed that the ZnO thin films were polycrystalline and had a wurtzite (hexagonal) structure. The morphology of the prepared ZnO thin films was investigated using atomic force microscopy and scanning electron microscopy techniques. Transmission spectra were recorded in the spectral domain from 300 nm to 1400 nm. The optical energy bandgap calculated from the absorption spectra (supposing allowed direct transitions) was in the range 3.05–3.30 eV. 相似文献
The investigation of structure, optical and electrical properties of tin and zinc oxide films on glass substrates by using magnetron sputtering are carried out. X-ray data show the formation of textured tin oxides film during deposition and its transformation to SnO2 polycrystalline film at low temperature (200 C) if the concentration of oxygen in the chamber is high (O2 — 100%, Ar — 0%). Optimal conditions of SnO2 polycrystalline film deposition (pressure of Ar–O2 mixture in chamber — 2.7 Pa, concentration of O2 — 10%) are determined. Low resistivity of as-deposited ZnO film and increasing ZnO crystallite sizes and phase volume at temperatures higher than the melting point of Zn (419.5 C) are explained by formation of conductive Zn and ZnO particle chains and their destruction, respectively. 相似文献
Zinc oxide films with c-axis preferred orientation were deposited on silicon (100) substrates by radio frequency (RF) reactive sputtering. The properties of the sam- ples were characterized by X-ray diffractometer, X-ray photoelectron spectroscopy and fluorescent-spectrophotometer. The effect of sputtering power and substrate temperature on the structural and photoluminescent (PL) properties of the ZnO films was investigated. The results indicated that when the sputtering power is 100 W and the substrate temperature is 300-400℃, it is suitable for the growth of high c-axis orientation and small strain ZnO films. A violet peak at about 380 nm and a blue band at about 430 nm were observed in the room temperature photolumines- cence spectra, and the origin of blue emission was investigated. 相似文献
The effect of a magnetic field generated by a planar magnetron on the ion current distribution on the substrate has been investigated as a function of the substrate voltage and gas pressure for two configurations of the magnetic field. The probe and the substrate were biased by negative potentials of −60 to −280 V with respect to the grounded anode, in order to collect the saturated ion current and investigate the influence of the magnetron magnetic field on the distribution of the ion flux of the vacuum arc source. It was shown that the planar magnetron placed under the substrate strongly affects the ion current and ion current distribution near the substrate. For a broad pressure range, the maximum ion flux collected by the probe increased by 40%, while the net ion current to the substrate increased by 20%. We have demonstrated that the ion current increased by 18%, and maximum ion current density increased by 40%. The results were explained in terms of the plasma flux interaction with the magnetic field of the magnetron. The setup may be suitable for controlling ion flux density on large substrates.