首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A unitary wave operator, exp (G), G(+) = -G, is considered to transform a multiconfigurational reference wave function Φ to the potentially exact, within basis set limit, wave function Ψ = exp (G)Φ. To obtain a useful approximation, the Hausdorff expansion of the similarity transformed effective Hamiltonian, exp (-G)Hexp (G), is truncated at second order and the excitation manifold is limited; an additional separate perturbation approximation can also be made. In the perturbation approximation, which we refer to as multireference unitary second-order perturbation theory (MRUPT2), the Hamiltonian operator in the highest order commutator is approximated by a Mo?ller-Plesset-type one-body zero-order Hamiltonian. If a complete active space self-consistent field wave function is used as reference, then the energy is invariant under orbital rotations within the inactive, active, and virtual orbital subspaces for both the second-order unitary coupled cluster method and its perturbative approximation. Furthermore, the redundancies of the excitation operators are addressed in a novel way, which is potentially more efficient compared to the usual full diagonalization of the metric of the excited configurations. Despite the loss of rigorous size-extensivity possibly due to the use of a variational approach rather than a projective one in the solution of the amplitudes, test calculations show that the size-extensivity errors are very small. Compared to other internally contracted multireference perturbation theories, MRUPT2 only needs reduced density matrices up to three-body even with a non-complete active space reference wave function when two-body excitations within the active orbital subspace are involved in the wave operator, exp (G). Both the coupled cluster and perturbation theory variants are amenable to large, incomplete model spaces. Applications to some widely studied model systems that can be problematic because of geometry dependent quasidegeneracy, H4, P4, and BeH(2), are performed in order to test the new methods on problems where full configuration interaction results are available.  相似文献   

2.
The traditional state universal multi-reference coupled cluster (SUMRCC) theory uses the Jeziorski-Monkhorst (JM) based Ansatz of the wave operator: Ω = ∑(μ)Ω(μ)∣φ(μ)??φ(μ)∣, where Ω(μ) = exp?(T(μ)) is the cluster representation of the component of Ω inducing virtual excitations from the model function φ(μ). In the first formulations, φ(μ)s were chosen to be single determinants and T(μ)s were defined in terms of spinorbitals. This leads to spin-contamination for the non-singlet cases. In this paper, we propose and implement an explicitly spin-free realization of the SUMRCC theory. This method uses spin-free unitary generators in defining the cluster operators, {T(μ)}, which even at singles-doubles truncation, generates non-commuting cluster operators. We propose the use of normal-ordered exponential parameterization for Ω:∑(μ){exp?(T(μ))}∣φ(μ)??φ(μ)∣, where {} denotes the normal ordering with respect to a common closed shell vacuum which makes the "direct term" of the SUMRCC equations terminate at the quartic power. We choose our model functions {φ(μ)} as unitary group adapted (UGA) Gel'fand states which is why we call our theory UGA-SUMRCC. In the spirit of the original SUMRCC, we choose exactly the right number of linearly independent cluster operators in {T(μ)} such that no redundancies in the virtual functions {χ(μ) (l)} are involved. Using example applications for electron detached/attached and h-p excited states relative to a closed shell ground state we discuss how to choose the most compact and non-redundant cluster operators. Although there exists a more elaborate spin-adapted JM-like ansatz of Datta and Mukherjee (known as combinatoric open-shell CC (COS-CC), its working equations are more complex. Results are compared with those from COS-CC, equation of motion coupled cluster methods, restricted open-shell Hartree-Fock coupled cluster, and full configuration interaction. We observe that our results are more accurate with respect to most other theories as a result of the use of the cluster expansion structure for our wave operator. Our results are comparable to those from the more involved COS-CC, indicating that our theory captures the most important aspects of physics with a considerably simpler scheme.  相似文献   

3.
Unitary transformations of operators and variables are considered for those cases when a Hermitian operator in the expression U = exp (i S ) explicitly depends on the projection operators. Some simple examples of such transformations are given and the equations obtained which define projectors (among special sets of them), thus bringing forth better estimations for upper and lower bounds. The unitary transformations are also applied to the reduced resolvent operator and equations are presented for the operators U that minimize the energy functional.  相似文献   

4.
Summary The Fock space coupled cluster method and its application to atomic and molecular systems are described. The importance of conserving size extensivity is demonstrated by the electron affinities of the alkali atoms. Two types of intruder states are discussed, one attributable to the orbital energy spectrum and the other caused by two-electron interactions. They are illustrated by the excited states of Li2 and by1 S states of Be, respectively. It is shown how both problems may be solved using incomplete model spaces. The selection of the model space in a moderately dense spectrum is discussed in connection with N2 excited states.Supported in part by the U.S.-Israel Binational Science Foundation  相似文献   

5.
For a quantum many-body problem, effective Hamiltonians that give exact eigenvalues in reduced model space usually have different expressions, diagrams, and evaluation rules from effective transition operators that give exact transition matrix elements between effective eigenvectors in reduced model space. By modifying these diagrams slightly and considering the linked diagrams for all the terms of the same order, we find that the evaluation rules can be made the same for both effective Hamiltonian and effective transition operator diagrams, and in many cases it is possible to combine many diagrams into one modified diagram. We give the rules to evaluate these modified diagrams and show their validity.  相似文献   

6.
The coupled cluster method is applied to a strongly correlated lattice Hamiltonian, and the coupled cluster linear response method is extended to the calculation of electronic spectra by finding an approximation to a resolvent operator which describes the spectral response of the coupled cluster solution to excitation operators. In this spectral coupled cluster method, the ground and excited states appear as resonances in the spectra, and the resolvent can be iteratively improved in selected spectral regions. The method is applied to a MnO2 plane model which corresponds to previous experimental works.  相似文献   

7.
In a nuclear magnetic-resonance (NMR) experiment, the spin density operator may be regarded as a superposition of irreducible spherical tensor operators. Each of these spin operators evolves during the NMR experiment and may give rise to an NMR signal at a later time. The NMR signal at the end of a pulse sequence may, therefore, be regarded as a superposition of spherical components, each derived from a different spherical tensor operator. We describe an experimental method, called spherical tensor analysis (STA), which allows the complete resolution of the NMR signal into its individual spherical components. The method is demonstrated on a powder of a (13)C-labeled amino acid, exposed to a pulse sequence generating a double-quantum effective Hamiltonian. The propagation of spin order through the space of spherical tensor operators is revealed by the STA procedure, both in static and rotating solids. Possible applications of STA to the NMR of liquids, liquid crystals, and solids are discussed.  相似文献   

8.
The effective and intermediate Hamiltonian (IH) multireference coupled cluster (CC) method with singles (S) and doubles (D) within the double electron attached (2,0) sector of the Fock space (FS) is formulated and implemented. The intermediate Hamiltonian realization of the (2,0) FS problem allows to replace the iterative scheme of the FS-CC equations based on the effective Hamiltonian with the diagonalization of the properly constructed matrix. The proposed method, IH-FS-CCSD (2,0), is rigorously size-extensive, easy to code, and numerically very efficient with the results comparable or slightly better than equation-of-motion ones at the CCSDT (T--triples) level. The performance of the method is discussed on the basis of test calculations for potential energy curves of the systems for which double positive ions dissociate into closed shell fragments (e.g., Na(2) dimer). The double electron attachment (DEA) scheme can be also useful in determination of the excitation spectra for difficult cases. The example is a carbon atom which has two electrons out of the closed shell structure. The newly implemented method is also analyzed by plotting potential energy curve for twisted ethylene case as a function of a dihedral angle between two methylene groups. Using DEA scheme one obtains a smooth, cusp free curve.  相似文献   

9.
Effective interaction operators usually act on a restricted model space and give the same energies (for Hamiltonian) and matrix elements (for transition operators, etc.) as those of the original operators between the corresponding true eigenstates. Various types of effective operators are possible. Those well defined effective operators have been shown to be related to each other by similarity transformation. Some of the effective operators have been shown to have connected-diagram expansions. It is shown in this paper that under a class of very general similarity transformations, the connectivity is conserved. The similarity transformation between Hermitian and non-Hermitian Rayleigh-Schrodinger perturbative effective operators is one of such transformations and hence the connectivity can be deducted from each other.  相似文献   

10.
A first principles quantum mechanical calculation of the vibrational energy levels and transition frequencies associated with protons in stoichiometric LiNbO(3) single crystal has been carried out. The hydrogen contaminated crystal has been approximated by a model one obtains by translating a supercell, i.e., a cluster of LiNbO(3) unit cells containing a single H(+) and a Li(+) vacancy. Based on the supercell model an approximate Hamiltonian operator describing vibrations of the proton sublattice embedded in the host crystal has been derived. It is further simplified to a sum of uncoupled Hamiltonian operators corresponding to different wave vectors (ks) and each describing vibrations of a quasi-particle (quasi-proton). The three dimensional (3D) Hamiltonian operator of k=0 has been employed to calculate vibrational levels and transition frequencies. The potential energy surface (PES) entering this Hamiltonian operator has been calculated point wise on a large set of grid points by using density functional theory, and an analytical approximation to the PES has been constructed by non-parametric approximation. Then, the nuclear motion Schro?dinger equation has been solved by employing the method of discrete variable representation. It has been found that the (quasi-)H(+) vibrates in a strongly anharmonic PES. Its vibrations can be described approximately as a stretching, and two orthogonal bending vibrations. The theoretically calculated transition frequencies agree within 1% with those experimentally determined, and they have allowed the assignment of one of the hitherto unassigned bands as a combination of the stretching and the bending of lower fundamental frequency.  相似文献   

11.
12.
Lie algebra, Zassenhaus, and parameter differentiation techniques are utilized to break up the exponential of a bilinear Hamiltonian operator into a product of noncommuting exponential operators by the virtue of the theory of Wei and Norman [J. Math. Phys. 4, 575 (1963); Proc. Am. Math. Soc., 15, 327 (1964)]. There are about three different ways to find the Zassenhaus exponents, namely, binomial expansion, Suzuki formula, and q-exponential transformation. A fourth, and most reliable method, is provided. Since linearly displaced and distorted (curvature change upon excitation/emission) Hamiltonian and spin-boson Hamiltonian may be classified as bilinear Hamiltonians, the presented algebraic algorithm (exponential operator disentanglement exploiting six-dimensional Lie algebra case) should be useful in spin-boson problems. The linearly displaced and distorted Hamiltonian exponential is only treated here. While the spin-boson model is used here only as a demonstration of the idea, the herein approach is more general and powerful than the specific example treated. The optical linear dipole moment correlation function is algebraically derived using the above mentioned methods and coherent states. Coherent states are eigenvectors of the bosonic lowering operator a and not of the raising operator a(+). While exp(a(+)) translates coherent states, exp(a(+)a(+)) operation on coherent states has always been a challenge, as a(+) has no eigenvectors. Three approaches, and the results, of that operation are provided. Linear absorption spectra are derived, calculated, and discussed. The linear dipole moment correlation function for the pure quadratic coupling case is expressed in terms of Legendre polynomials to better show the even vibronic transitions in the absorption spectrum. Comparison of the present line shapes to those calculated by other methods is provided. Franck-Condon factors for both linear and quadratic couplings are exactly accounted for by the herein calculated linear absorption spectra. This new methodology should easily pave the way to calculating the four-point correlation function, F(tau(1),tau(2),tau(3),tau(4)), of which the optical nonlinear response function may be procured, as evaluating F(tau(1),tau(2),tau(3),tau(4)) is only evaluating the optical linear dipole moment correlation function iteratively over different time intervals, which should allow calculating various optical nonlinear temporal/spectral signals.  相似文献   

13.
The equation-of-motion coupled-cluster (EOM-CC) methods truncated after double, triple, or quadruple cluster and linear excitation operators (EOM-CCSD, EOM-CCSDT, and EOM-CCSDTQ) have been derived and implemented into parallel execution programs. They compute excitation energies, excited-state dipole moments, and transition moments of closed- and open-shell systems, taking advantage of spin, spatial (real Abelian), and permutation symmetries simultaneously and fully (within the spin-orbital formalisms). The related Lambda equation solvers for coupled-cluster (CC) methods through and up to connected quadruple excitation (CCSD, CCSDT, and CCSDTQ) have also been developed. These developments have been achieved, by virtue of the algebraic and symbolic manipulation program that automated the formula derivation and implementation altogether. The EOM-CC methods and CC Lambda equations introduce a class of second quantized ansatz with a de-excitation operator (Y), a number of excitation operators (X), and a physical (e.g., the Hamiltonian) operator (A), leading to the tensor contraction expressions that can be performed in the order of ((...((yx)x)...)x)a or ((...((ax)x)...)x)y at the minimal peak operation cost, where x, y, and a are basis-set representations (i.e., tensors) of the respective operators X, Y, and A. Any intermediate tensor resulting from either contraction order is shown to have at most six groups of permutable indices, and this knowledge is used to guide the computer-synthesized programs to fully exploit the permutation symmetry of any tensor to minimize the arithmetic and memory costs.  相似文献   

14.
Linkage properties of the diagrammatic representation of the energies obtained in the multireference many-body perturbation calculations with respect to the incompleteness or completeness of the model space are discussed. The case of not completely degenerate model space is considered for which a comparison with the standard single-reference many-body perturbation expansion is possible. The Hose–Kaldor type of graphical representation of the perturbation expansion for the effective Hamiltonian is used in this comparison. It is shown that for an incomplete model space the perturbation expansion is not size-extensive. In this case, for a truncated expansion of the effective Hamiltonian, the energies obtained by diagonalization of the effective Hamiltonian matrix are represented by both linked and unlinked irreducible contributions. The unlinked ones do not appear when the complete model space is used.  相似文献   

15.
Canonical transformations have been widely used to simplify Hamiltonians and other operators. In molecular and in solid state theory, the so-called Van Vieck expansion is usually employed for this purpose while in theories of particles interacting with fields a combination of canonical transformations in closed form with Van Vleck type expansions has been found effective. For some of the transformations used in applications formulas in closed form are well known. It will be shown here that such formulas can be derived whenever the transformation function is bilinear in the canonical variables, and further that the use of matrix operators makes it possible to simplify these derivations substantially. The Cayley-Hamilton theorem is then used to express the expansions for the matrix operators in closed form. The number of separate operator terms appearing in the formulas thus obtained is the same as the rank of the matrices used. To calculate the coefficients of these operator terms a new type of special functions is introduced. The resulting linear canonical transformations include generalized rotations in both ordinary and phase-space. Explicit results have been obtained for several two- to four-dimensional problems.  相似文献   

16.
The symmetry adapted cluster (SAC)/symmetry adapted cluster configuration interaction (SAC-CI) methodology for the ground, excited, ionized, and electron-attached states of molecules was extended to giant molecular systems. The size extensivity of energy and the size intensivity of excitation energy are very important for doing quantitative chemical studies of giant molecular systems and are designed to be satisfied in the present giant SAC/SAC-CI method. The first extension was made to giant molecular crystals composed of the same molecular species. The reference wave function was defined by introducing monomer-localized canonical molecular orbitals (ml-CMO's), which were obtained from the Hartree-Fock orbitals of a tetramer or a larger oligomer within the electrostatic field of the other part of the crystal. In the SAC/SAC-CI calculations, all the necessary integrals were obtained after the integral transformation with the ml-CMO's of the neighboring dimer. Only singles and doubles excitations within each neighboring dimer were considered as linked operators, and perturbation selection was done to choose only important operators. Almost all the important unlinked terms generated from the selected linked operators were included: the unlinked terms are important for keeping size extensivity and size intensivity. Some test calculations were carried out for the ring crystals of up to 10 000-mer, confirming the size extensivity and size intensivity of the calculated results and the efficiency of the giant method in comparison with the standard method available in GAUSSIAN 03. Then, the method was applied to the ring crystals of ethylene and water 50-mers, and formaldehyde 50-, 100-, and 500-mers. The potential energy curves of the ground state and the polarization and electron-transfer-type excited states were calculated for the intermonomer distances of 2.8-100 A. Several interesting behaviors were reported, showing the potentiality of the present giant SAC/SAC-CI method for molecular engineering.  相似文献   

17.
Using string-based algorithms excitation energies and analytic first derivatives for excited states have been implemented for general coupled-cluster (CC) models within CC linear-response (LR) theory which is equivalent to the equation-of-motion (EOM) CC approach for these quantities. Transition moments between the ground and excited states are also considered in the framework of linear-response theory. The presented procedures are applicable to both single-reference-type and multireference-type CC wave functions independently of the excitation manifold constituting the cluster operator and the space in which the effective Hamiltonian is diagonalized. The performance of different LR-CC/EOM-CC and configuration-interaction approaches for excited states is compared. The effect of higher excitations on excited-state properties is demonstrated in benchmark calculations for NH(2) and NH(3). As a first application, the stationary points of the S(1) surface of acetylene are characterized by high-accuracy calculations.  相似文献   

18.
We propose a minimum principle to derive a QM/MM (quantum-mechanical/molecular-mechanical) method from the first principle. We approximate the Hamiltonian of a spectator substituent as the structure-dependent effective Hamiltonian in a least-squares sense. This effective Hamiltonian is expanded with the orthogonal operator set called the normal-ordered product. We determine the structure-dependent energy that corresponds to the classical MM energy and the extra one-electron potential that takes account of the interface effects. This QM/MM method is free from the double-counting problem and the artificial truncation of the localized molecular orbitals. As a numerical example we determine the one-electron effective Hamiltonian of the methyl group. This effective Hamiltonian is applied to the ethane and CH(3)CH(2)X molecules (X=CH(3), NH(2), OH, F, COOH, NH(3) (+), OH(2) (+), and COO(-)). It reproduced the relative energies, potential energy curves, and the Mulliken populations of the all-electron calculations fairly well.  相似文献   

19.
20.
We present in this paper a comprehensive study of the various aspects of size extensivity of a set of unitary group adapted multi-reference coupled cluster (UGA-MRCC) theories recently developed by us. All these theories utilize a Jeziorski–Monkhorst (JM) inspired spin-free cluster Ansatz of the form \(|\varPsi \rangle = \sum\nolimits_\mu \varOmega _\mu |\phi _\mu \rangle c_\mu\) with \(\varOmega _\mu =\{\exp ({T_\mu })\}\) , where \(T_\mu\) is expressed in terms of spin-free generators of the unitary group \(U(n)\) for n-orbitals with the associated cluster amplitudes. \(\{...\}\) indicates normal ordering with respect to the common closed shell \(core\) part, \(|0\rangle\) , of the model functions, \(\{\phi _\mu \}\) which is taken as the vacuum. We argue and emphasize in the paper that maintaining size extensivity of the associated theories is consequent upon (a) connectivity of the composites, \(G_\mu\) , containing the Hamiltonian \(H\) and the various powers of \(T\) connected to it, (b) proving the connectivity of the MRCC equations which involve not only \(G_\mu\) s but also the associated connected components of the spin-free reduced density matrices (RDMs) obtained via their cumulant decomposition and (c) showing the extensivity of the cluster amplitudes for non-interacting groups of orbitals and eventually of the size-consistency of the theories in the fragmentation limits. While we will discuss the aspect (a) above rather briefly, since this was amply covered in our earlier papers, the aspect (b) and (c), not covered in detail hitherto, will be covered extensively in this paper. The UGA-MRCC theories dealt with in this paper are the spin-free analogs of the state-specific and state-universal MRCC developed and applied by us recently.We will explain the unfolding of the proof of extensivity by analyzing the algebraic structure of the working equations, decomposed into two factors, one containing the composite \(G_\mu\) that is connected with the products of cumulants arising out of the cumulant decomposition of the RDMs and the second term containing some RDMs which is disconnected from the first and can be factored out and removed. This factorization ultimately leads to a set of connected MRCC equations. Establishing the extensivity and size-consistency of the theories requires careful separation of truly extensive cumulants from the ones which are a measure of spin correlation and are thus connected but not extensive. We have discussed in detail, using diagrams, the factorization procedure and have used suitable example diagrams to amplify the meanings of the various algebraic quantities of any diagram. We conclude the paper by summarizing our findings and commenting on further developments in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号