首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, buckling and free vibration behavior of a piezoelectric rotating cylindrical carbon nanotube-reinforced (CNTRC) shell is investigated. Both cases of uniform distribution (UD) and FG distribution patterns of reinforcements are studied. The accuracy of the presented model is verified with previous studies and also with those obtained by Navier analytical method. The novelty of this study is investigating the effects of critical voltage and CNT reinforcement as well as satisfying various boundary conditions implemented on the piezoelectric rotating cylindrical CNTRC shell. The governing equations and boundary conditions have been developed using Hamilton's principle and are solved with the aid of Navier and generalized differential quadrature (GDQ) methods. In this research, the buckling phenomena in the piezoelectric rotating cylindrical CNTRC shell occur as the natural frequency is equal to zero. The results show that, various types of CNT reinforcement, length to radius ratio, external voltage, angular velocity, initial hoop tension and boundary conditions play important roles on critical voltage and natural frequency of piezoelectric rotating cylindrical CNTRC shell.  相似文献   

2.
This paper presents an analytical method to investigate the nonlinear vibration characteristics of bi-graphene sheets/piezoelectric (BGP) laminated films subjected to electric loading based on a nonlocal continuum model, in which the two adjacent layers are coupled by van der Walls force. Utilizing von Kármán nonlinear geometric relation and nonlocal physical relation, the nonlinear dynamic equation of BGP laminated films under electric loading exerted on the piezoelectric layer is found, then the relation between the nonlinear resonant frequency and the nonlinear vibration amplitude for each layer of the BGP laminated films is obtained by using Galerkin method and harmonic-balance method. Results show that the nonlinear vibration amplitude for each layer of laminated films can be controlled by adjusting the electric potential exerted on piezoelectric layer, and the coupled effect of van der Walls force between graphene sheet and piezoelectric layer on the vibration amplitude of each layer depends on the order number of nonlinear resonant frequency and the mode shape.  相似文献   

3.
Active control of flexible vibrations by distributed piezoelectric actuators and sensors plays an increasing role in engineering, especially in light-weight structures. Exemplarily, in this contribution a rotating beam is studied which can be found in many practical applications, e.g. as robot arms or flexible manipulators in production processes. It has been intensively shown in the literature that it is possible to completely suppress the flexible vibrations by an appropriate distribution of piezoelectric actuation strains. In order to compensate the inertial forces in the considered rotating beam, a complex distribution is obtained, such that a practical realisation would be very extensive. To overcome the problem, a discrete approximation by piezoelectric patches is applied. In order to find an optimal configuration for an experimental setup, and to investigate several control strategies, a numerical simulation model has been implemented based on Bernoulli-Euler beam theory. The numerical results are verified by an experimental set-up, in which 48 piezoelectric patches have been attached on a beam with rectangular hollow cross-section. Each patch can be used either as an actuator or a sensor. Additionally, strain gauges can be used as sensors. For monitoring, acceleration sensors are used. The control system is implemented within a dSpace environment. The results show a significant reduction of the flexible vibrations. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The present paper is the continuation of earlier publications with stack of piezoelectric plates. This work is an author's idea of application for generating characteristics of piezoelectric systems. The presented program, called Piezo3D, allows for generation a single piezoelectric plate graphs as well as complex, free and bonded systems. An additional advantage is the ability to obtain the 3D graphs, in which the characteristics of the test graph can be based not only on frequency, but also on other parameters such as the thickness of the plate. The application is written in the numerical software "Matlab". (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
A Langevin piezoelectric transducer is used as a physical element for transmitting and receiving sound waves. The operating frequency of a transducer determines the distance that the sound wave can travel, so it is important to measure it. Due to the fact the structure of a transducer is quite complicated, it is quite difficult to estimate the precise physical parameters for the simulation model. Therefore, it takes a long time to measure the resonance frequency in the laboratory and fix the parameters by trial and error methods. This study applies a learning method to estimate a transducer frequency instead by trial and error experiments. The learning methods applied and compared including artificial neural network, support vector machine, C4.5, neuro-fuzzy, and ega-fuzzification. Compared with the theoretical one-dimensional model (simple lump element model), the results indicate that a learning method is an efficient way to estimate the piezoelectric transducer resonance frequency. The mega-fuzzification method is the best compared with other methods in this study.  相似文献   

6.
胡杨凡  王彪 《应用数学和力学》2008,29(12):1395-1410
用极化方法分析了含一二维夹杂的无限压电压磁基体中的波动散射问题.以此为目的,首先构建了二维压电压磁“相对体”的极化方法.当一般性波动退减为简谐振动时,极化方法的核心函数退减为二维谐波Green函数.利用氡变换的解析方法,首次求得了二维谐波Green函数的积分表达式,该表达式在低频初始波与小尺度椭圆柱夹杂物的假设下可得到进一步的简化,并最终求得解析解.推导针对同时具有压电以及压磁效应的一般性各向异性材料进行,然后将所得的结果简化到仅针对压电复合材料的情况.以此简化解析解为基础,提供了两个算例,讨论了影响含一二维椭圆柱夹杂的PZT-5H压电陶瓷复合材料的散射截面的各种不同因素(包括夹杂的尺寸、形状效应,材料常数的影响,以及压电效应等).  相似文献   

7.
Flügge's equations of motion for cylindrical shells are used to analyze the generation of travelling waves in a tube of an ultrasonic travelling wave transport system. The vibration-shape of a semi-infinite acrylic tube with structural damping excited by a piezoelectric ring at the end is calculated and the influence of the driving frequency is shown. Starting with an exponential ansatz the frequency dependent wavenumbers can be determined. Three frequency bands with different combinations of imaginary, real and complex wavenumbers can be found. Supposing a semi-infinite tube with given boundary conditions at the end of excitation the vibrations of the tube can be calculated depending on the frequency. Simulation agrees well with experimental results. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
采用Schmidt方法分析了在简谐反平面剪切波作用下,两个半空间夹层压电材料中的共线裂纹的动力学行为.压电材料层内裂纹垂直于界面,电边界条件假设为可导通.通过Fourier变换,使问题的求解转换为两对三重积分对偶方程.通过数值计算,给出了裂纹的几何尺寸、压电材料常数、入射波频率等对于应力强度因子的影响.结果表明,在不同的入射波频率范围,动力场将阻碍或促使压电材料内裂纹的扩展.与不可导通电边界条件相比,导通裂纹表面的电位移强度因子比不可导通裂纹的电位移强度因子要小许多.  相似文献   

9.
This paper deals with large amplitude vibration of hybrid laminated plates containing piezoelectric layers resting on an elastic foundation in thermal environments. The motion equation of the plate that includes plate-foundation interaction is based on a higher order shear deformation plate theory and solved by a two-step perturbation technique. The thermo-piezoelectric effects are also included and the material properties of both orthotropic layers and piezoelectric layers are assumed to be temperature-dependent. The numerical illustrations concern nonlinear vibration characteristics of unsymmetric cross-ply and antisymmetric angle-ply laminated plates with fully covered or embedded piezoelectric actuators under different sets of thermal and electrical loading conditions. The results show that the foundation stiffness and stacking sequence have a significant effect on the nonlinear vibration characteristics of the hybrid laminated plate. The results also reveal that the temperature rise reduces the natural frequency, but it only has a small effect on the nonlinear to linear frequency ratios of the hybrid laminated plate. The results confirm that the effect of the applied voltage on the natural frequency and the nonlinear to linear frequency ratios of the hybrid laminated plate is marginal except the plate is sufficiently thin.  相似文献   

10.
R. Gausmann  W. Seemann 《PAMM》2002,1(1):83-84
Due to the coupling of mechanical and electrical quantities in a piezoceramic material, it is possible to transform a harmonic input voltage to a harmonic output voltage by using a piezoceramic transformer. The advantage of such a transformer is the avoidance of magnetic fields and the very simple assembly. The piezoelectric transformer considered here consists of several parts. Three brass and two piezoceramic rods, that are glued together. The purpose of the system is to transform a determined input voltage to a determined ouput voltage with a high efficiency. Therefore, one of the piezoceramics is excited harmonically with a frequency close to a resonance frequency of the system. According to the electromechanical coupling in piezoceramics, the transformer oscillates with the excitation frequency. Due to the piezoelectric effect an electric displacement or an electric voltage is generated between the electrodes of the second piezoceramic. The amplitude of the output voltage depends on the geometry and the load connected between the electrodes of the second piezoceramic. In this paper a theoretical model to determine the gain and input impedance for such a transformer is derived and the results are compared with experiments.  相似文献   

11.
This paper presents the exact, explicit solution for the transient motion of a circular plate surface bonded by two piezoelectric layers, based on Kirchhoff plate model. The distribution of eclectic potential along the thickness direction is simulated by a quadratic function so that the Maxwell static electricity equation is satisfied. The piezoelectric layers are electrically grounded over the edge and electrodes at the two surfaces of the piezoelectric layers are shortly connected. The differential equations of motion are solved for simply supported and clamped boundary conditions. The solutions are expressed by elementary Bessel functions and obtained via exact inverse Laplace transform.  相似文献   

12.
This paper deals with investigation into the stability analysis for transverse motions of a cantilever micro-beam, which is axially loaded due to a voltage applied to the piezoelectric layers located on the lower and upper surfaces of the micro-beam. The piezoelectric layers are pinned to the open end of the micro-beam and not bonded to it through its length. Application of the DC and AC piezoelectric actuations creates steady and time varying axial forces. The equation of the motion is derived using variational principal, and discretized using modal expansion theorem. The differential equations of the discretized model are a set of Mathieu type ODEs, whose stability analysis is performed using Floquet theory for multiple degree of freedom systems. Considering first two eigen-functions in the modal expansion theorem leads in the prediction of flutter type of instability as a consequence of Hopf bifurcation, which is not seen in the reduced single degree of freedom system. The object of the present study is to passively control the flutter instability in the proposed model by applying AC voltage with suitable amplitude and frequency to the piezoelectric layers. The effect of various parameters on the stability of the structure, including damping coefficient, amplitude of the DC and AC voltages, and the frequency of the applied AC voltage is studied.  相似文献   

13.
均布载荷作用下的两端简支压电梁的解析解   总被引:11,自引:2,他引:9  
按平面应力问题推导出两端简支压电梁在均布载荷作用下的位移、电势、应力分布的解析表达式,并与压电有限元的计算结果进行了比较,为探索压电层的分布感测机理以及验证有限元等数值方法提供了参考依据.  相似文献   

14.
Piezoelectric vibration energy harvesters have attracted much attention due to its potential to replace currently popular batteries and to provide an sustainable power sources. Many researchers have proposed ways to increase the performance of piezoelectric energy harvesters like bandwidth, working frequency and output performance. Here in this contribution, we propose the method of using elastic extensions to tune the performance of a piezoelectric energy harvester. Mathematical model of the proposed device is derived and analyzed. Numerical simulations are done to investigate the influences of the derived parameters, like length ratio λl, bending stiffness ratio λB, and line density ratio λm. Results show that the elastic extension does change the motion of the proposed device and help tune the performance of piezoelectric energy harvesters.  相似文献   

15.
The wave propagation at large distances from a source of disturbance (isolated harmonic electric charge or body force of fixed frequency) in an infinite piezoelectric medium belonging to classes (6), (6 m m) or ceramic (α m) and (6 2 2) is discussed by means of asymptotic evaluation (at large distances) of Fourier integrals. Numerical results are given for the (6 m m) crystal class using the constants of cadmium selenide crystal.  相似文献   

16.
This paper presents the free vibration analysis of piezoelectric coupled annular plates with variable thickness on the basis of the Mindlin plate theory. No work has yet been done on piezoelectric laminated plates while the thickness is variable. Two piezoelectric layers are embedded on the upper and lower surfaces of the host plate. The host plate thickness is linearly increased in the radial direction while the piezoelectric layers thicknesses remain constant along the radial direction. Different combinations of three types of boundary conditions i.e. clamped, simply supported, and free end conditions are considered at the inner and outer edges of plate. The Maxwell static electricity equation in piezoelectric layers is satisfied using a quadratic distribution of electric potential along the thickness. The natural frequencies are obtained utilizing a Rayleigh–Ritz energy approach and are validated by comparing with those obtained by finite element analysis. A good compliance is observed between numerical solution and finite element analysis. Convergence study is performed in order to verify the numerical stability of the present method. The effects of different geometrical parameters such as the thickness of piezoelectric layers and the angle of host plate on the natural frequencies of the assembly are investigated.  相似文献   

17.
电场作用下压电层合梁的分析   总被引:5,自引:1,他引:4  
利用压电介质的二维本构关系,推导出带有上、下压电激励器的弹性梁在电场作用下的位移,应力分布的解析表达式,得到了压电激励器对弹性梁的等效作用力,最后给出了带有上,下压电激励的弹性梁在一端固支或两端简支边界条件下的算例。  相似文献   

18.
For the controller design purposes in order to suppress vibration magnitudes of a funnel shaped piezoelectric shell structure the mathematical model of the structure was identified in the form of the transfer function and the state space representation. The excitation of the structure with different signal types as well as the measurement of the responses were achieved using the piezoelectric actuator and sensor patches attached to the funnel. From the frequency responses obtained as a ratio of the Fast Fourier Transforms between the appropriate sensor and the actuator signals, discrete-time transfer functions were determined by best curve fitting of the model-based frequency response. For the state space model identification the subspace based identification approach was used. Obtained models were used for the optimal LQ controller design. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
This paper presents an efficient semi-analytical hybrid approach for simulating the dynamic interaction of perfectly bonded or damaged piezoelectric structures with a layered elastic waveguide. In the proposed approach, the frequency domain spectral element method is utilized for the discretization of the finite-sized surface mounted piezoelectric structure, and the semi-analytical boundary integral method is employed for the evaluation of wave phenomena in the host laminate structure. While the spectral element method allows cost-effective simulation of dynamics of a complex-shaped transducer (e.g. curvilinear or with wrapped electrodes), the analytically-based technique reliably describes wave excitation and propagation in multi-layered structures. The coupling of these methods is achieved through the rigorous fulfillment of the boundary conditions at the area of waveguide-transducer contact. Three various combinations of approximation polynomials and surface-load interpolation functions are applied in order to obtain the solution in a frequency domain. The time-domain solution is evaluated employing the inverse Laplace transform. Convergence of the method is confirmed for different bonding conditions. The paper demonstrates the efficiency of the proposed method for the multi-parameter analysis of the dependence of the resonance characteristics on the debonding parameters and contact conditions. The approach can be used for such a crucial task as diagnosing failures of piezoelectric devices incorporated into a structural health monitoring system based on guided waves.  相似文献   

20.
Secondary resonances of piezoelectric/elastic/piezoelectric sandwich beams submitted to active control are studied in this paper. The proportional and derivative nonlinear potential feedback controls via piezoelectric sensor and actuator layers are used. The dynamics of the beam is modelled by a highly nonlinear ordinary-differential equation. The method of multiple scales is applied and approximate solutions are obtained for hard excitations. Analytical frequency and phase-amplitude relationships as well as the time response are explicitly given for various super- and subharmonic resonances. Static and dynamic stability criteria are elaborated and critical displacement and excitation amplitudes associated to the resulting unstable zones are analytically given. The feedback parameters effects on the subharmonic and superharmonic resonances and on their stability are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号