首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel injectable in situ gelling drug delivery system (DDS) consisting of biodegradable N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) nanoparticles and thermosensitive chitosan/gelatin blend hydrogels was developed for prolonged and sustained controlled drug release. Four different HTCC nanoparticles, prepared based on ionic process of HTCC and oppositely charged molecules such as sodium tripolyphosphate, sodium alginate and carboxymethyl chitosan, were incorporated physically into thermosensitive chitosan/gelatin blend solutions to form the novel DDSs. Resulting DDSs interior morphology was evaluated by scanning electron microscopy. The effect of nanoparticles composition on both the gel process and the gel strength was investigated from which possible hydrogel formation mechanisms were inferred. Finally, bovine serum albumin (BSA), used as a model protein drug, was loaded into four different HTCC nanoparticles to examine and compare the effects of controlled release of these novel DDSs. The results showed that BSA could be sustained and released from these novel DDSs and the release rate was affected by the properties of nanoparticle: the slower BSA release rate was observed from DDS containing nanoparticles with a positive charge than with a negative charge. The described injectable drug delivery systems might have great potential application for local and sustained delivery of protein drugs.  相似文献   

2.
Carboxymethyl chitosan (CMCS), as a water‐soluble, biocompatible, and biodegradable polymer, is an excellent carrier for a sustained drug delivery system. In this study, a amphiphilic carboxymethyl chitosan‐ursolic acid nano‐drug carrier modified by folic acid (FPCU) were prepared, and then the nano‐drug carrier wrapped another anticancer drug 10‐hydroxycamptothecin were self‐assembled into nanoparticles (FPCU/HCPT NPs). The FPCU/HCPT NPs had a suitable size, high drug loading efficiency of ursolic acid (6.4%) and 10‐hydroxycamptothecin (14.1%). The drug release study in vitro indicated that the nanoparticles have obviously sustained effect and pH sensitive behaviors, the drug release amount was higher at pH 5.5 than at pH 7.4. in vitro and in vivo study showed that the nanoparticles displayed a high antitumor efficiency to tumor cells compared with free drug. The nano delivery system as a carrier for ursolic acid (UA) and 10‐hydroxycamptothecin (HCPT) has good application prospects in cancer treatment.  相似文献   

3.
In this work, colloidal gold nanoparticles (AuNPs) stabilized into a chitosan matrix were prepared using a green route. The synthesis was carried out by reducing Au(III) to Au(0) in an aqueous solution of chitosan and different organic acids (i.e., acetic, malonic, or oxalic acid). We have demonstrated that by varying the nature of the acid it is possible to tune the reduction rate of the gold precursor (HAuCl(4)) and to modify the morphology of the resulting metal nanoparticles. The use of chitosan, a biocompatible and biodegradable polymer with a large number of amino and hydroxyl functional groups, enables the simultaneous synthesis and surface modification of AuNPs in one pot. Because of the excellent film-forming capability of this polymer, AuNPs-chitosan solutions were used to obtain hybrid nanocomposite films that combine highly conductive AuNPs with a large number of organic functional groups. Herein, Au-chitosan nanocomposites are successfully proposed as sensitive and selective electrochemical sensors for the determination of caffeic acid, an antioxidant that has recently attracted much attention because of its benefits to human health. A linear response was obtained over a wide range of concentration from 5.00 × 10(-8) M to 2.00 × 10(-3) M, and the limit of detection (LOD) was estimated to be 2.50 × 10(-8) M. Moreover, further analyses have demonstrated that a high selectivity toward caffeic acid can be achieved without interference from catechin or ascorbic acid (flavonoid and nonphenolic antioxidants, respectively). This novel synthesis approach and the high performances of Au-chitosan hybrid materials in the determination of caffeic acid open up new routes in the design of highly efficient sensors, which are of great interest for the analysis of complex matrices such as wine, soft drinks, and fruit beverages.  相似文献   

4.
A carbon dioxide (CO(2))-based microencapsulation technique was used to impregnate indomethacin, a model drug, into biodegradable polymer nanoparticles. Compressed CO(2) was emulsified into aqueous suspensions of biodegradable particles. The CO(2) plasticizes the biodegradable polymers, increasing the drug diffusion rate in the particles so that drug loading is enhanced. Four types of biodegradable polymers were investigated, including poly(d,l-lactic acid) (PLA), poly(d,l-lactic acid-co-glycolic acid) (PLGA) with two different molar ratios of LA to GA, and a poly(d,l-lactic acid-b-ethylene glycol) (PLA-PEG) block copolymer. Biodegradable nanoparticles were prepared from polymer solutions through nonsolvent-induced precipitation in the presence of surfactants. Indomethacin was incorporated into biodegradable nanoparticles with no change of the particle size and morphology. The effects of a variety of experimental variables on the drug loadings were investigated. It was found that the drug loading was the highest for PLA homopolymer and decreased in PLGA copolymers as the fraction of glycolic acid increased. Indomethacin was predicted to have higher solubility in PLA than in PLGA based on the calculated solubility parameters. The drug loading in PLA increased markedly as the temperature for impregnation was increased from 35 to 45 degrees C. Drug release from the particles is a diffusion-controlled process, and sustained release can be maintained over 10 h. A simple Fickian diffusion model was used to estimate the diffusion coefficients of indomethacin in the biodegradable polymers. The diffusion coefficients are consistent with previous studies, suggesting that the polymer properties are unchanged by supercritical fluid processing. Supercritical CO(2) is nontoxic, easily separated from the polymers, can extract residual organic solvent, and can sterilize biodegradable polymers. The CO(2)-based microencapsulation technique is promising for the production of drug delivery devices without the use of harmful solvents.  相似文献   

5.
The present paper describes the preparation and characterization of novel biodegradable nanoparticles based on self-assembly of poly-gamma-glutamic acid (γ-PGA) and chitosan (CH). The nanosystems were stable in aqueous media at low pH conditions. Solubility of the systems was determined by turbidity measurements. Surface charge and mobility were measured electrophoretically. The particle size and the size distribution of the polyelectrolyte complexes were identified by dynamic light scattering and transmission electron microscopy (TEM). It was found that the size and size distribution of the nanosystems depends on the concentrations of γ-PGA and CH solutions and their ratio as well as on the pH of the mixture and the order of addition. The diameter of individual particles was in the range of 20–285 nm measured by TEM, and the average hydrodynamic diameters were between 150 and 330 nm. These biodegradable, self-assembling stable nanocomplexes might be useful for several biomedical applications.  相似文献   

6.
A novel drug delivery system based on two of the most abundant natural biopolymers was developed by modifying the surface of oxidized cellulose nanocrystal (CNC) with chitosan oligosaccharide (CSOS). First, the primary alcohol moieties of CNC were selectively oxidized to carboxyl groups using the 2,2,6,6-tetramethylpiperidine-1-oxyl radical catalyst. The amino groups of CSOS were then reacted with carboxylic acid groups on oxidized CNC (CNC-OX) via the carbodiimide reaction using N-hydroxysuccinimide and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide as coupling agents. Successful grafting of CSOS to CNC-OX was confirmed by infrared spectroscopy, thermogravimetry, potentiometric titration, and zeta potential measurements. The grafting resulted in a conversion of ~90 % carboxyl groups on CNC-OX and the degree of substitution was 0.26. CNC–CSOS nanoparticles showed a binding efficiency of 21.5 % and a drug loading of 14 % w/w. A drug selective electrode was used to directly measure the concentration of procaine hydrochloride released from CNC–CSOS particles. The in vitro drug release was studied at pH 8 and the nanoparticles revealed a fast release of up to 1 h, which can be used as biocompatible and biodegradable drug carriers for transdermal delivery applications.  相似文献   

7.
In this work the preparation of chitosan nanoparticle was investigated using methacrylic acid in different conditions and studied by particle size analyzer, zeta-potential, Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM). The particle size was dependent on the chitosan concentration used during the preparation method. Nanoparticles with sizes as small as 60 nm were achieved, that can be extremely important for several applications. The nanoparticles solution was also pH-sensitive, due to swelling and aggregation of the nanoparticles. The nanoparticles obtained presented a very homogeneous morphology showing a quite uniform particles size distribution and a rather spherical shape.  相似文献   

8.
The purpose of the present research work was to study the formation of linoleic acid (LA) modified carboxymethyl chitosan (LCC). Another objective was to evaluate effect of linoleic acid degree of substitution on loading capacity (LC), ADR loading efficiency (LE) and in vitro release profile of LCC nanoparticles. The hydrogel nanoparticles can be prepared using linoleic acid modified carboxymethyl chitosan (LACMCS) after the sonication. The critical aggregation concentration (CAC) of the self-aggregate of LA modified CMCS (LCC) was determined by measuring the fluorescence intensity of the pyrene as a fluorescent probe. The CAC values were in the range of 0.061–0.081 mg/mL. Self-aggregated nanoparticles exhibited an increased LC and LE, decreased sustained release with an increasing ratio of the hydrophobic LA to hydrophilic CMCS. LCC nanoparticles loaded with ADR exerted in vitro anticancer activity against Hela cells that was comparable to the activity of free (non-entrapped in nanoparticles) ADR.  相似文献   

9.
将壳聚糖与氯乙酸反应,通过控制反应条件制备了取代度为0.71的O-羧甲基壳聚糖,将改性后的O-羧甲基壳聚糖与多聚磷酸钠反应,制备了粒径分布在370-710nm的O-羧甲基壳聚糖纳米微粒,透射电镜观察表明该微粒呈球状,平均粒径为450nm.在此基础上研究了O-羧甲基壳聚糖纳米微粒对工业电镀镍废水Ni~(2+)吸附性能,考察了溶液pH、Ni~(2+)起始浓度、平衡吸附时间、粒径等因素的影响,结果表明:O-羧甲基壳聚糖微粒最佳吸附条件是Ni~(2+)溶液pH为8.0、Ni~(2+)溶液起始浓度为33.28mg/ml、平衡吸附时间为0.5h、粒径较小的O-羧甲基壳聚糖纳米微粒对Ni~(2+)的吸附量要大于粒径较大的吸附量.  相似文献   

10.
建立了一种简单、可靠的基于载入树状分子内部的纳米金修饰电极用于亚硝酸根测定的电化学分析方法.将壳聚糖(Chit)修饰在玻碳电极表面,在偶联活化剂碳二亚胺存在的条件下,4.5代羧基末端的树状分子(Dendrimer)通过其外围的羧基与壳聚糖的氨基形成酰胺键而连接在电极表面.Au(Ⅲ)通过与树状分子内部氮的配位作用被结合在...  相似文献   

11.
A general approach for producing biodegradable nanoparticles for sustained nucleic acid release is presented. The nanoparticles are produced by precipitating a water-in-oil microemulsion in supercritical CO(2). The microemulsion consists of a transfer RNA aqueous solution (water phase), dichloromethane containing poly(l-lactic acid)-poly(ethylene glycol) (oil phase), the surfactant n-octyl β-D-glucopyranoside, and the cosurfactant n-butanol.  相似文献   

12.
介绍纳米金–壳聚糖修饰电极的制备方法及其测定抗坏血酸的分析应用。采用电沉积方法,将氯金酸与壳聚糖的混合电解液直接共沉积,制备了壳聚糖–纳米金修饰玻碳电极的电化学传感器。利用循环伏安法研究了抗坏血酸浓度、p H值等对抗坏血酸在修饰电极上的电化学行为的影响。实验结果表明,修饰电极对抗坏血酸具有良好的电催化氧化作用,抗坏血酸浓度在5×10~(–5)~1×10~(–3) mol/L范围内线性良好,回归方程为I_p=0.433 8c+0.881 9,相关系数为0.998 71。该法可指导纳米金–壳聚糖修饰电极的制备及抗坏血酸含量的测定。  相似文献   

13.
For the purpose of targeted drug delivery, composite biodegradable nanoparticles were prepared from chitosan and the poly-γ-glutamic acid via an ionotropic gelation process. These stable self-assembled nanoparticles were characterized by dynamic light scattering, transmission electron microscopy, and atomic force microscopy, which demonstrated that the nanosystem consists of spherical particles with a smooth surface both in aqueous environment and in dried state. Toxicity measurements showed that the composition is nontoxic when tested either on cell cultures or in animal feeding experiments. To evaluate the potential of the nanosystem for intracellular drug delivery, the nanoparticles were fluorescently labeled and folic acid was attached as a cancer cell-specific targeting moiety. The ability of the particles to be internalized was tested using confocal microscopic imaging on cultured A2780/AD ovarian cancer cells, which overexpress folate receptors. The quantitative data obtained by digital processing of the intensity of green color of each pixel in the pictures inside the cell boundaries and total intensity of fluorescence inside the cells showed that “targeted” particles internalized into the cells significantly faster and the total accumulation of these particles was substantially higher in the cancer cells when compared with “nontargeted” particles, which may facilitate effective and specific cytoplasmic delivery of anticancer agents loaded into such nanoparticles. Zsolt Keresztessy and Magdolna Bodnár contributed equally to this work.  相似文献   

14.
Chitosan with excellent biodegradable and biocompatible characteristics has received attention as an oral drug delivery vehicle. A quaternized chitosan (i.e., N-diethylmethyl chitosan, DEMC) was prepared based on a modified two-step process via a 22 factorial design to optimize the preparative conditions. DEMC was fully characterized using FTIR and 1H-NMR spectroscopies. As calculated using NMR-based data, high degree of quaternization was achieved through the optimized two-step process. The highly quaternized biopolymeric derivative was subjected to microbial experiments. The antimicrobial activities of chitosan and DEMC against Escherchia coli were compared by calculation of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Our data indicates that although the antimicrobial activity of DEMC is higher than that of chitosan in acetic acid medium, the both compounds are pH dependent and an increase in concentration of acetic acid results in a significant decrease in both MIC and MBC.  相似文献   

15.
The work presents a synthetic approach that combines methods of metal vapor synthesis (MVS), gelation and supercritical drying in order to obtain chitosan aerogels containing silver nanoparticles. On the first stage, two types of silver organosols were prepared via the eco-sustainable MVS method. Then the prepared silver organosols were used to modify chitosan powders for producing metal-chitosan powder composites. Gelation of the powder composites was performed in oxalic acid at elevated temperatures. Supercritical drying of the gels was implemented in order to preserve the formed porous structures. Thus, the chitosan powders modified with MVS-produced silver nanoparticles were used to prepare metal-chitosan aerogels. Characterization of the structure and the morphology of both powder and aerogel silver-chitosan composites was conducted by means of low temperature nitrogen adsorption, X-ray photoelectron spectroscopy, X-ray powder diffraction, small-angle X-ray scattering, SEM and TEM. Changes in the structure and morphology of silver nanoparticles between powder and aerogel composites were analyzed.  相似文献   

16.
ABSTRACT: BACKGROUND: The aim of this study is to investigate the functions of polymers and size of nanoparticles on the antibacterial activity of silver bionanocomposites (Ag BNCs). In this research, silver nanoparticles (Ag NPs) were incorporated into biodegradable polymers that are chitosan, gelatin and both polymers via chemical reduction method in solvent in order to produce Ag BNCs. Silver nitrate and sodium borohydride were employed as a metal precursor and reducing agent respectively. On the other hand, chitosan and gelatin were added as a polymeric matrix and stabilizer. The antibacterial activity of different sizes of silver nanoparticles was investigated against Gram-positive and Gram-negative bacteria by the disk diffusion method using Mueller-Hinton Agar. RESULTS: The properties of Ag BNCs were studied as a function of the polymer weight ratio in relation to the use of chitosan and gelatin. The morphology of the Ag BNCs films and the distribution of the Ag NPs were also characterized. The diameters of the Ag NPs were measured and their size is less than 20 nm. The antibacterial trait of silver/chitosan/gelatin bionanocomposites was investigated. The silver ions released from the Ag BNCs and their antibacterial activities were scrutinized. The antibacterial activities of the Ag BNC films were examined against Gram-negative bacteria (E. coli and P. aeruginosa) and Gram-positive (S. aureus and M. luteus) by diffusion method using Muller-Hinton agar. CONCLUSIONS: The antibacterial activity of Ag NPs with size less than 20 nm was demonstrated and showed positive results against Gram-negative and Gram-positive bacteria. The Ag NPs stabilized well in the polymers matrix.  相似文献   

17.
Chitosan nanoparticles were prepared from chitosan with various molecular weights by tripolyphosphate (TPP) ionic gelation combined with a spray drying method. The morphologies and characteristics of chitosan nanoparticles were determined by TEM, FE-SEM and from their mean sizes and zeta potentials. The effect of chitosan molecular weight (130, 276, 760 and 1200 cPs) and size of spray dryer nozzle (4.0, 5.5 and 7.0 µm) on mean size, size distribution and zeta potential values of chitosan nanoparticles was investigated. The results showed that the mean size of chitosan nanoparticles was in the range of 166–1230 nm and the zeta potential value ranged from 34.9 to 59 mV, depending on the molecular weight of chitosan and size of the spray dryer nozzles. The lower the molecular weight of chitosan, the smaller the size of the chitosan nanoparticles and the higher the zeta potential. A test for the antibacterial activity of chitosan nanoparticles (only) and a chitosan nanoparticle–amoxicillin complex against Streptococcus pneumoniae was also conducted. The results indicated that a smaller chitosan nanoparticle and higher zeta potential showed higher antibacterial activity. The chitosan nanoparticle–amoxicillin complex resulted in improved antibacterial activity as compared to amoxicillin and chitosan nanopaticles alone. Using a chitosan nanoparticle–amoxicillin complex could reduce by three times the dosage of amoxicillin while still completely inhibiting S. pneumoniae.  相似文献   

18.
This work investigates the polyanion initiated gelation process in fabricating chitosan-TPP (tripolyphosphate) nanoparticles in the size range of 100-250 nm intended to be used as carriers for the delivery of gene or protein macromolecules. It demonstrates that ionic gelation of cationic chitosan molecules offers a flexible and easily controllable process for systematically and predictably manipulating particle size and surface charge which are important properties in determining gene transfection efficacy if the nanoparticles are used as non-viral vectors for gene delivery, or as delivery carriers for protein molecules. Variations in chitosan molecular weight, chitosan concentration, chitosan to TPP weight ratio and solution pH value were examined systematically for their effects on nanoparticle size, intensity of surface charge, and tendency of particle aggregation so as to enable speedy fabrication of chitosan nanoparticles with predetermined properties. The chitosan-TPP nanoparticles exhibited a high positive surface charge across a wide pH range, and the isoelectric point (IEP) of the nanoparticles was found to be at pH 9.0. Detailed imaging analysis of the particle morphology revealed that the nanoparticles possess typical shapes of polyhedrons (e.g., pentagon and hexagon), indicating a similar crystallisation mechanism during the particle formation and growth process. This study demonstrates that systematic design and modulation of the surface charge and particle size of chitosan-TPP nanoparticles can be readily achieved with the right control of critical processing parameters, especially the chitosan to TPP weight ratio.  相似文献   

19.
A novel and simple method for delivery of adriamycin (ADR) was developed using self-aggregates of deoxycholic acid-modified chitosan. Deoxycholic acid was covalently conjugated to chitosan via EDC-mediated reaction to generate self-aggregated chitosan nanoparticles. ADR was physically entrapped inside the self-aggregates and the characteristics of ADR-loaded chitosan self-aggregates were analyzed by dynamic light scattering, fluorescence spectroscopy, and atomic force microscopy (AFM). The maximum amount of entrapped ADR reached 16.5 wt% of chitosan self-aggregates, suggesting a loading efficiency of 49.6 wt%. The size of ADR-loaded self-aggregates increased with increasing the loading content of ADR. AFM images showed spherical shape of ADR-loaded self-aggregates, and ADR was slowly released from chitosan self-aggregates in PBS solution (pH 7.2). Received: 24 April 2000/Accepted: 11 July 2000  相似文献   

20.
以马来酸酐改性的壳聚糖(MAH-chitosan)和丙烯酸(AA)为单体,采用反相微乳液聚合法制备了AA含量分别为77%(AA-Cs)和29%(Cs-AA)壳聚糖/聚丙烯酸复合纳米粒子。TEM结果表明,该复合纳米粒子平均粒径为125~150nm,进而研究了其对牛血红蛋白(Hb)、牛血清白蛋白(BSA)和溶菌酶(Ly)吸附和脱附行为。AA-Cs对各种蛋白的吸附量均较高;而Cs-AA对3种蛋白的吸附则具有一定选择性。AA-Cs对等电点低于脱附pH值的Hb的脱附量较大。Cs-AA粒子在较低pH值(pH=3.4)时对吸附有利,但在高pH值(pH=6.6)进行吸附时,对脱附更为有利。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号