首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UV photochemical vapor generation (photo-CVG) as sample introduction was first adapted for determination of ultratrace cobalt by atomic fluorescence spectrometry (AFS). Cobalt volatile species can be generated when the buffer system of formic acid and formate containing Co (II) is exposed to UV radiation. The generated gaseous products were separated from liquid phase within a gas–liquid separator and then transported to AFS for determination of cobalt. Factors affecting the efficiency of photo-CVG were investigated in detail, including type and concentration of low molecular weight (LMW) organic acid, buffer system, UV irradiation time, reaction temperature, carrier gas flow rate and hydrogen flow rate. With 4% (v/v) HCOOH and 0.4 mol L− 1 HCOONa buffer solution, 150 s irradiation time and 15 W low pressure mercury lamp, a generation efficiency of 23–25% was achieved. A limit of detection (LOD) of 0.08 ng mL− 1 without any pre-concentration procedure and a precision of 2.2% (RSD, n = 11) at 20 ng mL− 1 were obtained under the optimized conditions. The proposed method was successfully applied in the analysis of several simple matrix real water samples.  相似文献   

2.
A highly sensitive, selective and rapid method for the determination of cobalt based on the rapid reaction of cobalt(II) with 5-(2-benzothiazolylazo)-8-hydroxyquinolene BTAHQ and the solid phase extraction of the Co(II)-BTAHQ complex with C18 membrane disks were developed. In the presence of pH = 6.4 buffer solution and cetylpyridenium chloride (CPC) medium, BTAHQ reacts with cobalt to form a deep violet complex with a molar ratio of 1:1 (cobalt to BTAHQ). This complex was enriched by the solid phase extraction with C18 membrane disks. An enrichment factor of 100 was obtained by elution of the complex from the disks with a minimal amount of isopentyl alcohol. In isopentyl alcohol medium, the molar absorptivity of the complex is 2.42 × 105 L mol−1 cm−1 at 658 nm. Beer’s law is obeyed in the range of 0.01–0.38 μg mL−1 in the measured solution. The relative standard deviation for 11 replicate samples of 0.20 μg mL−1 level is 1.37%. The detection and quantification limits reach 3.1 and 9.7 ng mL−1 in the original samples. This method was applied for the determination of cobalt in biological, water, soil and pharmaceutical preparation samples with good results.  相似文献   

3.
A simple and rapid technique based on salting out assisted solvent extraction was developed for extraction of atorvastatin from serum sample and high performance liquid chromatography–UV was used for its detection. In the present study, 1.0 mL serum was extracted by 0.5 mL of acetonitrile and some parameters that can affect extraction such as type and volume of extraction solvent, type of salt, and pH were optimized. Under optimized experimental conditions, the calibration curve was found to be linear in the range of 0.001–10 ng mL−1 in human serum and the correlation coefficient (R2) and the limits of detection were >0.99 and 0.0005 ng mL−1, respectively. The accuracy of the method in terms of average recovery of the compound in spiked serum and water samples was better than 90%.  相似文献   

4.
ZnS-polyacrylic acid (ZnS-PAA) was prepared by an in situ polymerization method using nano-ZnS as core in the presence of acrylic acid (AA), and ZnS-PAA nanoparticles was characterized by ultraviolet spectrometry (UV) and transmission electron microscopy (TEM). Based on the significant increase of the resonance light scattering (RLS) intensity with the interaction between nanoparticles and serum albumin, RLS method was developed for the sensitive determination of serum albumin (BSA and HSA). Under optimum conditions, the change of the intensity (ΔI) of the RLS spectra at λ = 392 nm was linearly proportional to the concentration of BSA and HSA. The linear range was 1–100 ng mL?1 for HSA and 1–120 ng mL?1 for BSA, and the limit of detection (LOD) was 0.4 ng mL?1 for HSA and 0.5 ng mL?1 for BSA. This method proved to be very sensitive, rapid, simple and tolerant of most interfering substances.  相似文献   

5.
Analytical performances of metal coated slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) and slotted quartz tube in situ atom trapping flame atomic absorption spectrometry (SQT-AT-FAAS) systems were evaluated for determination of Bi. Non-volatile elements such as Mo, Zr, W and Ta were tried as coating materials. It was observed that W-coated SQT gave the best sensitivity for the determination of Bi for SQT-FAAS and SQT-AT-FAAS. The parameters for W-coated SQT-FAAS and W-coated SQT-AT-FAAS were optimized. Sensitivity of FAAS for Bi was improved as 4.0 fold by W-coated SQT-FAAS while 613 fold enhancement in sensitivity was achieved by W-coated SQT-AT-FAAS using 5.0 min trapping with respect to conventional FAAS. MIBK was selected as organic solvent for the re-atomization of Bi from the trapping surface. Limit of detection values for W-coated SQT-FAAS and W-coated SQT-AT-FAAS was obtained as 0.14 μg mL 1 and 0.51 ng mL 1, respectively. Linear calibration plot was obtained in the range of 2.5–25.0 ng mL 1 for W-coated SQT-AT-FAAS. Accuracy of the W-coated SQT-AT-FAAS system was checked by analyzing a standard reference material, NIST 1643e.  相似文献   

6.
A sensitive and selective liquid chromatographic–tandem mass spectrometric (LC–MS–MS) method was developed to determine pantoprazole sodium (PNT) in human urine. After solid-phase extraction with SPE cartridge, the urine sample was analysed on a C18 column (symmetry 3.5 μm; 75 mm × 4.6 mm i.d) interfaced with a triple quadrupole tandem mass spectrometer. Positive electrospray ionization was employed as the ionization source. The mobile phase consisted of acetonitrile–water (90:10, v/v). The method was linear over a concentration range of 1–100 ng mL?1. The lower limit of quantitation was 1 ng mL?1. The intra-day and inter-day relative standard deviation across three validation runs over the entire concentration range was <10.5%. The accuracy determined at three concentrations (8.0, 50.0 and 85.0 ng mL?1 PNT) was within ±1.25% in terms of relative errors.  相似文献   

7.
The reaction of carbonate radical with phenol in aqueous solution has been investigated in systems in which carbonate radicals were generated by UV irradiation of an aqueous solution of [Co(NH3)5CO3]+ (pH 8.0 phosphate buffer). Both steady state and time resolved photolysis experiments were performed. Upon continuous irradiation of complex phenol mixtures, phenol was converted into benzoquinone and dihydroxybenzenes. Benzoquinone was the major by-product in the early stages of the reaction. Laser flash excitation (266 and 355 nm) of the cobalt complex clearly showed the formation of the carbonate radical. When phenol was added to the solution of the complex, a second species was observed which was assigned to the phenoxyl radical. The second-order rate constant of reaction between phenol and carbonate radical was found to be equal to 1.6 × 107 M−1 s−1, in agreement with literature data of 2.2 × 107 M−1 s−1.  相似文献   

8.
Simultaneous determination of nimesulide, phenylpropanolamine, chlorpheniramine and caffeine in rat plasma by reversed-phase high performance liquid-chromatography (RP–HPLC) with photodiode array (PDA) detection method was developed and validated. Sample preparation based on a simple extraction procedure consisting of deproteination and extraction with methanol solution followed by volume make up with the aqueous component of the mobile phase obtained best recoveries of the analytes. The chromatographic conditions were optimized and the analytes were separated on XBridge™ C18 (3.5 μm, 4.6 × 150 mm) column in isocratic elution with the mobile phase composition of acetonitrile and 10 mM ammonium acetate buffer (pH 4.0, 0.1% formic acid) (18:82 v/v%) at the flow rate of 1 mL min−1 and the effluents were monitored in the wavelength range of 220–275 nm. The method was linear for all analytes over the following concentration (ng mL−1) ranges: nimesulide 250–4000; phenylpropanolamine 100–1500; chlorpheniramine 20–500; and caffeine 10–100. Acceptable precision, accuracy and recoveries were obtained for quality control (QC) samples at three concentrations (low QC, middle QC and high QC). The percentage of relative standard deviation (% RSD) of Inter and intra-run precision of all molecules was <15% and the percentage of accuracy was 100 ± 10. The analytes were more stable in rat plasma at different storage conditions. Finally the method was efficiently applied to pharmacokinetics study in rat plasma.  相似文献   

9.
A headspace adsorptive microextraction technique was developed using a novel polyaniline-nylon-6 (PANI-N6) nanofiber sheet, fabricated by electrospinning. The homogeneity and the porosity of the prepared PANI-N6 sheet were studied using the scanning electron microscopy (SEM) and nanofibers diameters were found to be around 200 nm. The novel nanofiber sheet was examined as an extracting medium to isolate some selected chlorobenzenes (CBs), as model compounds, from aquatic media. The extracted analytes were desorbed using μL-amounts of solvent and eventually an aliquot of extractant was injected into gas chromatography–mass spectrometry (GC–MS). Various parameters affecting the extraction and desorption processes were optimized. The developed method proved to be convenient and offers sufficient sensitivity and a good reproducibility. Limits of detection achieved for CBs with the developed analytical procedure ranged from 19 to 33 ng L?1, while limits of quantification were from 50 to 60 ng L?1. The relative standard deviations (RSD) at a concentration level of 0.1 ng mL?1 and 1 ng mL?1 were in the range of 8–14% and 5–11% (n = 3), respectively. The calibration curves of analytes were investigated in the range of 50–1000 ng L?1 and R2 between 0.9739 and 0.9932 were obtained. The developed method was successfully applied to the extraction of selected CBs from tap and river water samples. The relative recovery (RR) percentage obtained for the spiked real water samples at 0.1 ng mL?1 and 1 ng mL?1 level were 93–103% and 95–104%, respectively. The whole procedure showed to be conveniently applicable and quite easy to handle.  相似文献   

10.
A disposable sensor for the determination of cotinine in human serum was developed based on immunochromatographic test strip and quantum dot label. In this assay, cotinine linked with quantum dot competes with cotinine in sample to bind to anti-cotinine antibody in the test strip and the quantum dots serve as signal vehicles for electrochemical readout. Some parameters governing the performance of the sensor were optimized. The sensor shows a wide linear range from 1 ng mL?1 to 100 ng mL?1 cotinine with a detection limit of 1.0 ng mL?1. The sensor was validated with spiked human serum samples and it was found that this method was reliable in measuring cotinine in human serum. The results demonstrate that this sensor is rapid, accurate, and less expensive and has the potential for point of care (POC) detection of cotinine and fast screening of tobacco smoke exposure.  相似文献   

11.
In this study an effective method was developed to assay erythromycin ethylsuccinate for an oral suspension dosage form. The chromatographic separation was achieved on an X-Terra™ C18 analytical column. A mixture of acetonitrile–ammonium dihydrogen phosphate buffer (0.025 mol L-1) (60:40, V/V) (pH 7.0) was used as the mobile phase, effluent flow rate monitored at 1.0 mL min−1, and UV detection at 205 nm. In forced degradation studies, the effects of acid, base, oxidation, UV light and temperature were investigated showing no interference in the peak of drug. The proposed method was validated in terms of specificity, linearity, robustness, precision and accuracy. The method was linear at concentrations ranging from 400 to 600 μg mL−1, precise (intra- and inter-day relative standard deviations <0.65), accurate (mean recovery; 99.5%). The impurities and degradation products of erythromycin ethylsuccinate were selectively determined with good resolution in both the raw material and the final suspension forms. The method could be useful for both routine analytical and quality control assays of erythromycin ethylsuccinate in commercial powder for an oral suspension dosage form and it could be a very powerful tool to investigate the chemical stability of erythromycin ethylsuccinate.  相似文献   

12.
Methods for the atomic fluorescence spectrometric (AFS) determination of total arsenic and arsenic species in wines based on continuous flow hydride generation (HG) with atomization in miniature diffusion flame (MDF) are described. For hydride-forming arsenic, l-cysteine is used as reagent for pre-reduction and complexation of arsenite, arsenate, monomethylarsonate and dimethylarsinate. Concentrations of hydrochloric acid and tetrahydroborate are optimized in order to minimize interference by ethanol. Procedure permits determination of the sum of these four species in 5–10-fold diluted samples with limit of detection (LOD) 0.3 and 0.6 μg l 1 As in white and red wines, respectively, with precision between 2% and 8% RSD at As levels within 0.5–10 μg l 1.Selective arsine generation from different reaction media is used for non-chromatographic determination of arsenic species in wines: citrate buffer at pH 5.1 for As(III); 0.2 mol l 1 acetic acid for arsenite + dimethylarsinate (DMA); 8 mol l 1 HCl for total inorganic arsenic [As(III) + As(V)]; and monomethylarsonate (MMA) calculated by difference. Calibration with aqueous and ethanol-matched standard solutions of As(III) is used for 10- and 5-fold diluted samples, respectively. The LODs are 0.4 μg l 1 for As(III) and 0.3 μg l 1 for the other three As species and precision is within 4–8% RSDs.Arsenic species in wine were also determined by coupling of ion chromatographic separation on an anion exchange column and HG-flame AFS detection. Methods were validated by means of recovery studies and comparative analyses by HG-AFS and electrothermal atomic absorption spectrometry after microwave digestion. The LODs were 0.12, 0.27, 0.15 and 0.13 μg l 1 (as As) and RSDs were 2–6%, 5–9%, 3–7% and 2–5% for As(III), As(V), MMA and DMA arsenic species, respectively. Bottled red and white wines from Bulgaria, Republic of Macedonia and Italy were analyzed by non-chromatographic and chromatographic procedures and the As(III), arsenite, has been confirmed as major arsenic species.  相似文献   

13.
In this work, the potential of modified multiwalled carbon nanotubes for separation and preconcentration of trace amounts of manganese ion is studied. Multiwalled carbon nanotubes were oxidized with concentrated HNO3 and then modified with loading 1-(2-pyridylazo)-2-naphtol. Mn(II) ions could be quantitatively retained by modified multiwalled carbon nanotubes in the pH range of 8–9.5. Elution of the adsorbed manganese was carried out with 5.0 mL of 0.1 mol L?1 HNO3. Detection limit is 0.058 ng mL?1 and analytical curve is linear in the range of 0.1 ng mL?1–5.0 μg mL?1 in the initial solution with a correlation coefficient 0.9977 and the preconcentration factor is 100. Relative standard deviation for eight replicate determination of 0.5 μg mL?1 of manganese in the final solution is 0.41%. The effects of the experimental parameters, including the sample pH, flow rates of sample and eluent solution, eluent type, breakthrough volume and interference ions, were studied for preconcentration of Mn(II) ions in detail to optimize the conditions. The method was successfully applied for separation, preconcentration and determination of manganese in different samples.  相似文献   

14.
A novel and sensitive electrochemiluminescence (ECL) immunosensor based on CdS quantum dots (QDs)-carbon nanotubes (CNTs) and gold nanoparticles-chitosan (GNPs-CHIT) was presented. CdS QDs ECL was much enhanced by combing poly(diallyldimethylammonium chloride) functionalized CNTs. GNPs-CHIT nanohybrids was used to construct an effective antibody immobilization matrix with excellent stability and bioactivity. The principle of ECL detection for target human IgG is based on the increment of steric hindrance after immunoreaction, which resulted in the decrease in ECL intensity. The linear response range was between 0.006 and 150 ng mL?1, and the detection limit was 0.001 ng mL?1. This approach offers obvious advantages of being simpler, faster, and more stable compared with other immunosensors, which possesses great potential for protein detection in clinical laboratory.  相似文献   

15.
Polyethylene terephthalte (PET) was irradiated with carbon (70 MeV) and copper (120 MeV) ions to analyze the induced modifications with respect to optical, structural and thermal properties. In the present investigation, the fluence for carbon irradiation was varied from 1×1011 to 1×1014 ions cm−2, while that for copper beam was kept in the range of 1×1011 to 1×1013 ions cm−2. UV–vis, FTIR, XRD and DSC techniques were utilized to study the induced changes. The analysis of UV–vis absorption studies reveals that there is decrease of optical energy gap up to 10% on carbon ion irradiation (at 1×1014 ions cm−2), whereas the copper beam (at 1×1013 ions cm−2) leads to a decrease of 49%. FTIR analysis indicated the formation of alkyne end groups along with the overall degradation of polymer with copper ion irradiation. X-ray diffraction analysis revealed that the semi-crystalline PET losses its crystallinity on swift ion irradiation. It was found that the carbon beam (1×1014 ions cm−2) decreased the crystallite size by 16% whereas this decrease is of 12% in case of the copper ion irradiated PET at 1×1013 ions cm−2. The loss in crystallinity on irradiation has been supported by DSC thermograms.  相似文献   

16.
An HPTLC method for analysis of Exemestane in bulk and pharmaceutical formulation has been established and validated. The analyte was separated on aluminium plates precoated with silica gel 60 F254. The mobile phase was chloroform:methanol 9.2:0.8 (v/v). Quantification was done by densitometric scanning at 247 nm. Response was a linear function of Exemestane concentration in the range of 100–500 μg mL−1. The limit of detection and quantification for Exemestane were 5.8 and 17.58 μg mL−1, respectively. Average recovery of Exemestane was 100.1, which shows that the method was free from interference from excipients present in the formulation. The established method enabled accurate, precise, and rapid analysis of Exemestane in bulk as well as pharmaceutical formulation.  相似文献   

17.
《Microchemical Journal》2011,97(2):348-351
A sensitive and selective preconcentration method using solid-phase extraction (SPE) disk, namely multiwalled carbon nanotubes (MWCNTs) disk, is proposed for the determination of atrazine and simazine in water samples. Atrazine and simazine were extracted on MWCNTs disk and then determined by gas chromatography–mass spectrometry (GC/MS). Several parameters on the enrichment factor of the analytes were investigated. The experimental results showed that it was possible to obtain quantitative analysis when the solution pH was 5 using 200 mL of validation solution containing 0.1 μg of triazines and 5 mL of acetone as an eluent. The maximum enrichment factors for atrazine and simazine were 3900 ± 250 and 4000 ± 110, respectively when 200 mL of sample solution volume was used. Relative standard deviations for seven determinations were 6.9% (atrazine) and 3.0% (simazine) under optimum conditions. The linear range of calibration curves were 0.1 to 1 ng mL 1 for each analyte with good correlation coefficients. The detection limits (3S/N) were 2.5 and 5.0 pg mL 1 for atrazine and simazine, respectively. The proposed method was successfully applied to the determination of atrazine and simazine in environmental water samples with high precision and accuracy.  相似文献   

18.
A systematic investigation of UV photochemical vapor generation (photo-CVG) and its potential application for seven typical hydride-forming elements (As, Sb, Bi, Te, Sn, Pb and Cd) when combined with atomic fluorescence spectrometry (AFS) detection is presented. These analyte ions were converted to volatile species following UV irradiation of their aqueous solution to which low molecular weight organic acids (such as formic, acetic or propionic acid) had been added, and introduced to an atomic fluorescence spectrometer for subsequent analytical measurements. The experimental conditions for photo-CVG and the interferences arising from concomitant elements were carefully investigated. Limits of detection as low as 0.08, 0.1, 0.2 and 0.5 ng mL− 1 were obtained for Te, Bi, Sb and As, respectively, comparable to those by hydride generation-AFS. The RSDs obtained with the proposed method for these elements were better than 5% at 50 ng mL− 1. It is noteworthy that the presence of TiO2 nanoparticles combined with UV irradiation remarkably enhances the CVG efficiencies of Se(VI) and Te(VI), which cannot form hydrides with KBH4/NaBH4. Moreover, photo-CVG has a greater tolerance toward interferences arising from transition elements than hydride generation, and this facilitates its application to the analysis of complicated sample matrices.  相似文献   

19.
Titanium dioxide (i.e. TiO2) in nano-form is a constituent of many nanomaterials that are used in sunscreens, cosmetics, industrial products and in biomedical applications. Quantification of TiO2 nanoparticles in various matrixes is a topic of great interest for researchers studying the potential health and environmental impacts of nanoparticles. However, analysis of TiO2 as Ti4+ is difficult because current digestion techniques require use of strong acids that may be a health and safety risk in the laboratory. To overcome this problem, we developed a new method to digest TiO2 nanoparticles using ammonium persulfate as a fusing reagent. The digestion technique requires short times to completion and optimally requires only 1 g of fusing reagent. The fusion method showed >95% recovery of Ti4+ from 6 μg mL?1 aqueous suspensions prepared from 10 μg mL?1 suspension of different forms of TiO2, including anatase, rutile and mixed nanosized crystals, and amorphous particles. These recoveries were greater than open hot-plate digestion with a tri-acid solution and comparable to microwave digestion with a tri-acid solution. Cations and anions commonly found in natural waters showed no significant interferences when added to samples in amounts of 10 ng to 110 mg, which is a much broader range of these ions than expected in environmental samples. Using ICP-MS for analysis, the method detection limit (MDL) was determined to be 0.06 ng mL?1, and the limit of quantification (LOQ) was 0.20 ng mL?1. Analysis of samples of untreated and treated wastewater and biosolids collected from wastewater treatment plants yielded concentrations of TiO2 of 1.8 and 1.6 ng mL?1 for the wastewater samples, respectively, and 317.4 ng mg?1 dry weights for the biosolids. The reactions between persulfate ions and TiO2 were evaluated using stoichiometric methods and FTIR and XRD analysis. A formula for the fusing reaction is proposed that involves the formation of sulfate radicals.  相似文献   

20.
This paper presents a novel approach to electrochemically determine enzymatically active PSA using ferrocene-functionalized helix peptide (CHSSLKQK). The principle of electrochemical measurement is based on the specific proteolytic cleavage events of the FC-peptide on the gold electrode surface in the presence of PSA, resulting the change of the current signal of the electrode. The percentage of the decreased current is linear with the concentration of active PSA at the range of 0.5–40 ng mL?1 with a detection limit of 0.2 ng mL?1. The direct transduction of peptide cleavage events into an electrical signal provides a simple, sensitive method for detecting the enzymatic activity of PSA and determining the active PSA concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号