首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Traumatic Brain Injury (TBI), is one of the most common causes of neurological damage in young populations. It is widely considered as a risk factor for neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s (PD) disease. These diseases are characterized in part by the accumulation of disease-specific misfolded proteins and share common pathological features, such as neuronal death, as well as inflammatory and oxidative damage. Nano formulation of Pomegranate seed oil [Nano-PSO (Granagard TM)] has been shown to target its active ingredient to the brain and thereafter inhibit memory decline and neuronal death in mice models of AD and genetic Creutzfeldt Jacob disease. In this study, we show that administration of Nano-PSO to mice before or after TBI application prevents cognitive and behavioral decline. In addition, immuno-histochemical staining of the brain indicates that preventive Nano-PSO treatment significantly decreased neuronal death, reduced gliosis and prevented mitochondrial damage in the affected cells. Finally, we examined levels of Sirtuin1 (SIRT1) and Synaptophysin (SYP) in the cortex using Western blotting. Nano-PSO consumption led to higher levels of SIRT1 and SYP protein postinjury. Taken together, our results indicate that Nano-PSO, as a natural brain-targeted antioxidant, can prevent part of TBI-induced damage.  相似文献   

2.
3.
Mitochondrial DNA (mtDNA) plays a crucial but incompletely understood role in cellular biochemistry and etiology of numerous disease states. Thus, there is an urgent need for targeted probes that can dynamically respond to changes to mtDNA such as copy number in live cells, but it is difficult to permeate the mitochondrial membrane of the living cell. Now, a ruthenium(II) light‐switching probe targeted by peptide vectorization selectively to mitochondrial nucleoids is presented. Evidence for DNA binding by the probe in live cells is derived from confocal fluorescence microscopy, resonance Raman, and luminescence lifetime imaging. While viable under imaging conditions, specific staining of mitochondrial DNA permitted efficient and selective photoinduced toxicity on a cell‐by‐cell basis under higher excitation intensities. This powerful combination of imaging and photocytotoxicity is an important step towards realizing phototheranostic application of such RuII probes.  相似文献   

4.
Gout is a type of inflammatory arthritis caused by the deposition of monosodium uric acid (MSU) crystals in tissues. The etiology of gout is directly linked to the NLRP3 inflammasome, since MSU crystals are NLRP3 inflammasome activators. Therefore, we decided to search for a small-molecule inhibitor of the NLRP3 inflammasome for the prevention of gout inflammation. We found that loganin suppressed MSU crystals-induced caspase-1 (p20) and interleukin (IL)-1β production and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) specks formation in mouse primary macrophages, showing its ability to inhibit the NLRP3 inflammasome. In an air pouch inflammation model, oral administration of loganin to mice prevented MSU crystals-induced production of mature IL-1β and IL-18 in air pouch exudates, resulting in decreased neutrophil recruitment. Furthermore, oral administration of loganin suppressed MSU crystals-induced gout inflammation in a mouse foot gout model, which was accompanied by the inhibition of the NLRP3 inflammasome. Loganin blocked de novo synthesis of mitochondrial DNA in air pouches and foot tissues injected with MSU crystals. Consistently, loganin prevented MSU crystals-induced mitochondrial damage in macrophages, as it increased mitochondrial membrane potential and decreased the amount of mitochondrial reactive oxygen species. These data demonstrate that loganin suppresses NLRP3 inflammasome activation by inhibiting mitochondrial stress. These results suggest a novel pharmacological strategy to prevent gout inflammation by blocking NLRP3 inflammasome activation and mitochondrial dysfunction.  相似文献   

5.
Rubilactone ( 1 ), dihydromollugin ( 2 ), and mollugin ( 3 ) are naturally occurring products found in Rubia cordifolia, which is a famous Chinese herb with anti tumor, viral inhibition and other activities. Synthetic studies were carried out in these naphthoic acid esters starting from 1,4‐dihydroxy‐2‐naphthoic acid. In this study, we finished the synthesis of rubilactone which has not been reported before and also synthesized dihydromollugin and mollugin with better yields with different approaches compared to those previously reported in the literature.  相似文献   

6.
Although numerous studies have demonstrated the biological and multifaceted nature of dimethyl sulfoxide (DMSO) across different in vitro models, the direct effect of “non-toxic” low DMSO doses on cardiac and cancer cells has not been clearly explored. In the present study, H9c2 cardiomyoblasts and MCF-7 breast cancer cells were treated with varying concentrations of DMSO (0.001–3.7%) for 6 days. Here, DMSO doses < 0.5% enhanced the cardiomyoblasts respiratory control ratio and cellular viability relative to the control cells. However, 3.7% DMSO exposure enhanced the rate of apoptosis, which was driven by mitochondrial dysfunction and oxidative stress in the cardiomyoblasts. Additionally, in the cancer cells, DMSO (≥0.009) led to a reduction in the cell’s maximal respiratory capacity and ATP-linked respiration and turnover. As a result, the reduced bioenergetics accelerated ROS production whilst increasing early and late apoptosis in these cells. Surprisingly, 0.001% DMSO exposure led to a significant increase in the cancer cells proliferative activity. The latter, therefore, suggests that the use of DMSO, as a solvent or therapeutic compound, should be applied with caution in the cancer cells. Paradoxically, in the cardiomyoblasts, the application of DMSO (≤0.5%) demonstrated no cytotoxic or overt therapeutic benefits.  相似文献   

7.
2-Methoxyestradiol, a naturally occurring human metabolite with demonstrated anticancer activity, has been synthesized in three steps and 76% yield from the bis(MOM) ether of 2-formylestradiol.  相似文献   

8.
Integramide A is a 16‐amino acid peptide inhibitor of the enzyme HIV‐1 integrase. We have recently reported that the absolute stereochemistries of the dipeptide sequence near the C terminus are L ‐Iva14‐D ‐Iva15. Herein, we describe the syntheses of the natural compound and its D ‐Iva14‐L ‐Iva15 diastereomer, and the results of their chromatographic/mass spectrometric analyses. We present the conformational analysis of the two compounds and some of their synthetic intermediates of different main‐chain length in the crystal state (by X‐ray diffraction) and in solvents of different polarities (using circular dichroism, FTIR absorption, and 2D NMR techniques). These data shed light on the mechanism of inhibition of HIV‐1 integrase, which is an important target for anti‐HIV therapy.  相似文献   

9.
Excessive glutamate neurotransmitters result in oxidative neurotoxicity, similar to neurodegeneration. An indigenous berry of Thailand, Cleistocalyx nervosum var. paniala (CNP), has been recognized for its robust antioxidants. We investigated the effects and mechanisms of CNP fruit extracts on antioxidant-related survival pathways against glutamate-induced neurotoxicity. The extract showed strong antioxidant capability and had high total phenolic and flavonoid contents, particularly resveratrol. Next, the protective effects of the CNP extract or resveratrol on the glutamate-induced neurotoxicity were examined in HT22 hippocampal cells. Our investigation showed that the pretreatment of cells with the CNP extract or resveratrol attenuated glutamate-induced neuronal death via suppression of apoptosis cascade by inhibiting the levels of cleaved- and pro-caspase-3 proteins. The CNP extract and resveratrol suppressed the intracellular ROS by increasing the mRNA expression level of antioxidant enzymes (SODs, GPx1, and CAT). We found that this extract and resveratrol significantly increased SIRT1 expression as a survival-related protein. Moreover, they also promoted the activity of the Nrf2 protein translocation into the nucleus and could bind to the promoter containing the antioxidant response element, inducing the expression of the downstream GPx1-antioxidant protein. Our data illustrate that the CNP extract and resveratrol inhibit apoptotic neuronal death via glutamate-induced oxidative neurotoxicity in HT22 cells through the activation of the SIRT1/Nrf2 survival mechanism.  相似文献   

10.
主要考察了稀土离子对线粒体氧化损伤(膜脂质过氧化、膜蛋白氧化、线粒体DNA氧化)的作用。结果表明,稀土离子(La3 ,Gd3 ,Yb3 ,Ce3 )浓度大于2×10-5mol.L-1时,对线粒体膜脂质过氧化、膜蛋白氧化均有明显的促进作用;在对Fe2 诱导的线粒体氧化过程中,La3 ,Gd3 和Yb3 能明显地增强Fe2 的氧化作用,而Ce3 对Fe2 的作用表现出明显的拮抗作用,此外Ce3 对Fe2 诱导的线粒体DNA氧化损伤表现出明显的拮抗作用,显示了Ce3 的特殊性。  相似文献   

11.
Oxidative stress (OS) and c-Jun N-terminal kinase (JNK) are both key indicators implicated in neuro-inflammatory signalling pathways and their respective neurodegenerative diseases. Drugs targeting these factors can be considered as suitable candidates for treatment of neuronal dysfunction and memory impairment. The present study encompasses beneficial effects of a naturally occurring triterpenoid, friedelin, against scopolamine-induced oxidative stress and neurodegenerative pathologies in mice models. The treated animals were subjected to behavioural tests i.e., Y-maze and Morris water maze (MWM) for memory dysfunction. The underlying mechanism was determined via western blotting, antioxidant enzymes and lipid profile analyses. Molecular docking studies were carried out to predict the binding modes of friedelin in the binding pocket of p-JNK protein. The results reveal that scopolamine caused oxidative stress by (1) inhibiting catalase (CAT), peroxidase enzyme (POD), superoxide dismutase (SOD), and reduced glutathione enzyme (GSH); (2) the up-regulation of thiobarbituric acid reactive substances (TBARS) in mice brain; and (3) affecting the neuronal synapse (both pre- and post-synapse) followed by associated memory dysfunction. In contrast, friedelin administration not only abolished scopolamine-induced oxidative stress, glial cell activation, and neuro-inflammation but also inhibited p-JNK and NF-κB and their downstream signaling molecules. Moreover, friedelin administration improved neuronal synapse and reversed scopolamine-induced memory impairment accompanied by the inhibition of β-secretase enzyme (BACE-1) to halt amyloidogenic pathways of amyloid-β production. In summary, all of the results show that friedelin is a potent naturally isolated neuro-therapeutic agent to reverse scopolamine-induced neuropathology, which is characteristic of Alzheimer’s disease.  相似文献   

12.
13.
O-GlcNAcylation is a nutrient-driven post-translational modification known as a metabolic sensor that links metabolism to cellular function. Recent evidences indicate that the activation of O-GlcNAc pathway is a potential pro-survival pathway and that acute enhancement of this response is conducive to the survival of cells and tissues. 2-(4-Methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-d-pyranoside (SalA-4g), is a salidroside analogue synthesized in our laboratory by chemical structure-modification, with a phenyl ring containing a para-methoxy group and a sugar ring consisting of N-acetylglucosamine. We have previously shown that SalA-4g elevates levels of protein O-GlcNAc and improves neuronal tolerance to ischemia. However, the specific target of SalA-4g regulating O-GlcNAcylation remains unknown. To address these questions, in this study, we have focused on mitochondrial network homeostasis mediated by O-GlcNAcylation in SalA-4g’s neuroprotection in primary cortical neurons under ischemic-like conditions. O-GlcNAc-modified mitochondria induced by SalA-4g demonstrated stronger neuroprotection under oxygen glucose deprivation and reoxygenation stress, including the improvement of mitochondrial homeostasis and bioenergy, and inhibition of mitochondrial apoptosis pathway. Blocking mitochondrial protein O-GlcNAcylation with OSMI-1 disrupted mitochondrial network homeostasis and antagonized the protective effects of SalA-4g. Collectively, these data demonstrate that mitochondrial homeostasis mediated by mitochondrial protein O-GlcNAcylation is critically involved in SalA-4g neuroprotection.  相似文献   

14.
15.
A highly efficient screening method for naturally occurring products that bind to a specific target protein was demonstrated by using hVDR magnetic beads. The native ligand 1α,25(OH)2 VD3 ( 1 ) was selectively bound by hVDR magnetic beads when present in a mixture of natural compounds. Furthermore, this method was shown to be applicable to the identification of natural products that interact with a specific protein immobilized on the beads from an extract of a natural resource. Two new natural compounds were isolated by this method. This approach will be helpful for the discovery of novel, naturally occurring products that bind to specific target proteins. This method has the further advantages that it can identify the HPLC peak corresponding to the target compound for isolation, as well as provide important UV, CD, or MS profile information.  相似文献   

16.
The breast cancer stem cell (CSC) and bulk breast cancer cell potency of a series of metallopeptides containing dichloro(1,10‐phenanthroline)copper(II) and various organelle‐targeting peptide sequences is reported. The mitochondria‐targeting metallopeptide 1 exploits the higher mitochondrial load in breast CSCs over the corresponding non‐CSCs and the vulnerability of breast CSCs to mitochondrial damage to potently and selectively kill breast CSCs. Strikingly, 1 reduces the formation and size of mammospheres to a greater extent than salinomycin, an established CSC‐potent agent. Mechanistic studies show that 1 enters CSC mitochondria, induces mitochondrial dysfunction, generates reactive oxygen species (ROS), activates JNK and p38 pathways, and prompts apoptosis. To the best of our knowledge, 1 is the first metallopeptide to selectivity kill breast CSCs in vitro.  相似文献   

17.
A new protective compound, dictyoquinazol A, was synthesized starting from 5‐methoxy‐2‐nitrobenzoic acid in six‐steps in 36% overall yield. Two derivatives B and C, isolated from the mushroom Dictyophora indusiata, were also synthesized from Dictyoquinazole A.  相似文献   

18.
The endofungal metabolite epicoccamide D was synthesised in eighteen steps and 17 % yield as the first member of the family of natural glycotetramic acids. The modular character of the synthesis opens access also to analogues featuring different sugars and spacers. It comprises several high‐yielding key steps. The β‐D ‐mannosyl group was introduced by using an α‐D ‐glucosyl imidate donor with subsequent oxidative‐reductive epimerisation at C‐2′. The pyrrolidine ring was closed quantitatively by a Lacey‐Dieckmann condensation of an N‐(β‐ketoacyl)‐N‐methyl alaninate. The resulting 3‐[ω‐(β‐D ‐mannosyl)octadec‐2‐enoyl]tetramic acid was hydrogenated in the presence of the rhodium catalyst (R,R)‐[Rh(Et‐DUPHOS)][BF4] to establish the (7S)‐stereocentre. This was possible only after blocking the acyltetramic acid as a BF2‐chelate to prevent capture of the metal catalyst. We also assigned the hitherto unknown configuration of the natural product as being 5S,7S by comparison of its 13C NMR spectroscopic and optical rotation data with those of our two synthetic 5S,7R/S‐diasteromers.  相似文献   

19.
Creating structure–property correlations at different distance scales is one of the important challenges to the rational design of molecular gelators. Here, a series of dihydroxylated derivatives of long‐chain fatty acids, derived from three naturally occurring molecules—oleic, erucic and ricinoleic acids—are investigated as gelators of a wide variety of liquids. Conclusions about what constitutes a more (or less!) efficient gelator are based upon analyses of a variety of thermal, structural, molecular modeling, and rheological results. Correlations between the manner of molecular packing in the neat solid or gel states of the gelators and Hansen solubility data from the liquids leads to the conclusion that diol stereochemistry, the number of carbon atoms separating the two hydroxyl groups, and the length of the alkanoic chains are the most important structural parameters controlling efficiency of gel formation for these gelators. Some of the diol gelators are as efficient or even more efficient than the well‐known, excellent gelator, (R)‐12‐hydroxystearic acid; others are much worse. The ability to form extensive intermolecular H‐bonding networks along the alkyl chains appears to play a key role in promoting fiber growth and, thus, gelation. In toto, the results demonstrate how the efficiency of gelation can be modulated by very small structural changes and also suggest how other structural modifications may be exploited to create efficient gelators.  相似文献   

20.
Oxidative stress induced by reactive oxygen species (ROS) is one of the critical factors that involves in the pathogenesis and progression of many diseases. However, lack of proper techniques to scavenge ROS depending on their cellular localization limits a thorough understanding of the pathological effects of ROS. Here, we demonstrate the selective scavenging of mitochondrial, intracellular, and extracellular ROS using three different types of ceria nanoparticles (NPs), and its application to treat Parkinson's disease (PD). Our data show that scavenging intracellular or mitochondrial ROS inhibits the microglial activation and lipid peroxidation, while protecting the tyrosine hydroxylase (TH) in the striata of PD model mice. These results indicate the essential roles of intracellular and mitochondrial ROS in the progression of PD. We anticipate that our ceria NP systems will serve as a useful tool for elucidating the functions of various ROS in diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号