首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Characterizing polymerase chain reaction (PCR) amplicons has been accomplished for the first time using flow injection analysis coupled to electrospray ionization mass spectrometry (ESI-MS). The PCR amplicons were amplified at the human tyrosine hydroxylase short tandem repeat locus from an individual homozygotic for the 9.3 allele. One product was amplified using Pfu polymerase and yielded a blunt-ended amplicon of 82 base-pairs (bp) in length. The second PCR product was amplified using Taq polymerase that resulted in an amplicon with cohesive termini of 82 bp plus either mono- or diadenylation. The two PCR amplicons were alternatively injected using a 0.5-microL loop at 2 microM for the Pfu amplicon and 1 microM for the Taq amplicon with a flow rate of 200 nL/min during data acquisition. Both PCR amplicons were accurately identified using mass measurements illustrating the compatibility of ESI-MS for genotyping short tandem repeat sequences and the potential for high-throughput genotyping of large PCR amplicons.  相似文献   

2.
Enzymatic recognition of unlocked nucleic acid (UNA) nucleotides was successfully accomplished. Therminator DNA polymerase was found to be an efficient enzyme in primer extension reactions. Polymerase chain reaction (PCR) amplification of a 81 mer UNA-modified DNA library was efficiently achieved by KOD DNA polymerase.  相似文献   

3.
Thymidine analogues bearing a variety of functional groups at the C5-position via an amino-linker arm were prepared and the substrate activity for PCR using thermophilic KOD Dash DNA polymerase was examined. The enzyme accepted the thymidine analogues bearing pyridine, imidazole, biotin, a cationic-charged guanidinium, a cationic-charged amino, mercaptopyridyl and phenanthrolne groups at the C5-position, forming the corresponding PCR product. However, a thymidine analogue bearing a carboxyl group at the C5-position was a poor substrate and the corresponding PCR products could not be obtained. The thymidine analogue bearing a mercapto group was also a poor substrate for the enzyme, because it dimerized by disulfide linkage under PCR conditions. The enzyme hardly accepts the thymidine analogues with a negatively-charged carboxyl group or a bulky group as a substrate. KOD Dash DNA polymerase, having a broader substrate specificity than any other DNA polymerase, will expand the variety of modified DNAs that can be prepared by PCR.  相似文献   

4.
A sensitive polymerase chain reaction (PCR) method based on amplification of a specific DNA fragment was established for the identification of camel (Camelus) materials. The species-specific primer pair L183/H372 was designed based on the nucleotide sequence of the mitochondrial cytochrome b gene, and its specificity was confirmed by amplification of 3 camel (domestic double-humped camel, wild double-humped camel, wild one-humped camel) samples and 11 non-Camelus animal (sheep, goat, pig, chicken, cattle, fish, dog, horse, donkey, deer, and rabbit) materials. An expected 208 base pair fragment was amplified from camel materials; no cross-reactive or additional fragments were generated from other animal materials. Taq I restriction endonuclease digestion of the unpurified PCR product can be used routinely to confirm the camel origin of the amplified sequence.  相似文献   

5.
《Analytical letters》2012,45(3):497-511
Abstract

This paper presents a novel method for performing polymerase chain reaction (PCR) amplification by using spiral channel fabricated on copper where a transparent polytetrafluoroethylene (PTFE) capillary tube was embedded. The channel with 25 PCR cycles was gradually developed in a spiral manner from inner to outer. The durations of PCR mixture at the denaturation, annealing and extension zones were gradually lengthened at a given flow rate, which may benefit continuous‐flow PCR amplification as the synthesis ability of the Taq polymerase enzyme usually weakens with PCR time. Successful continuous‐flow amplification of DNA fragments has been demonstrated. The PCR products of 249, 500 and 982 bp fragments could be obviously observed when the flow rates of PCR mixture were 7.5, 7.5 and 3.0 mm s?1, respectively, and the required amplification times were about 25, 25, and 62 min, respectively. Besides, the successful segmented‐flow PCR of three samples (249, 500 and 982 bp) has also been reported, which demonstrates the present continuous‐flow PCR microfluidics can be developed for high‐throughput genetic analysis.  相似文献   

6.
Null AP  Hannis JC  Muddiman DC 《The Analyst》2000,125(4):619-626
Electrospray ionization mass spectrometry (ESI-MS) has been utilized to obtain accurate mass measurements of intact PCR products; however, single-stranded PCR products are necessary to detect sequence modifications such as base substitutions, additions or deletions. The locations of these modifications can subsequently be determined using additional stages of mass spectrometry. The recombinant enzyme lambda exonuclease selectively digests one strand of a DNA duplex from a 5' phosphorylated end leaving the complementary strand intact. Using this rapid enzymatic step, we were able to produce single-stranded PCR products by digestion of an intact PCR product derived from the Human Tyrosine Hydroxylase (HUMTHO1) gene, which contains a tetrameric repeating motif. The non-template directed 3' adenylation common when using Taq polymerase resulted in three distinct species (blunt-ended, mono-adenylated and di-adenylated), which added complexity to the spectrum of the double-stranded product. The data from the single-stranded products shows that one strand is preferentially adenylated over the other, which cannot be determined from the mass spectrum of the double-stranded PCR product alone. The ESI-FTICR (Fourier transform ion cyclotron resonance) mass spectra of the lambda exonuclease treated PCR products exhibited less than expected signal-to-noise (S/N) ratios. This is attributed to inaccurate concentration calculations due to remaining double-stranded PCR product amplified with unphosphorylated primers, and to matrix effects contributed by the lambda exonuclease reaction buffer. To further test this hypothesis, we investigated and determined the limit of detection to be 0.27 microM using standard curve statistics for single acquisitions of a synthetic 75-mer. The concentrations of the noncoding and coding strands produced by lambda exonuclease digestion were calculated to be 0.29 and 0.37 microM, respectively, taking into account the presence of double-stranded product. The products were electrosprayed from concentrations at the limit of detection requiring the averaging of 5-10 acquisitions to produce a sufficient S/N ratio, indicating that product concentration, base composition and matrix effects play a combined, significant role in detection of lambda exonuclease treated PCR products. Although additional work will be required to further exploit this strategy, lambda exonuclease clearly provides mass spectrometrists with a method to generate single-stranded PCR products.  相似文献   

7.
Capillary electrophoresis (CE) is a new, high-resolution tool for the analysis of DNA restriction fragments and DNA amplified by the polymerase chain reaction (PCR). By combining many of the principles of traditional slab gel methods in a capillary format, it is possible to perform molecular size determinations of human and plant PCR amplification products and DNA restriction fragments. DNA restriction fragments and PCR products were analyzed by dynamic sieving electrophoresis (DSE) and capillary gel electrophoresis (CGE). As part of this study, sample preparation procedures, injection modes, and the use of molecular mass markers were evaluated. Optimum separations were performed using the uPage-3 (3% T, 3% C) CGE columns with UV detection at 260 nm. Membrane dialysis and ultrafiltration/centrifugation proved to be nearly equivalent methods of sample preparation. Reproducibility studies demonstrated that blunt-ended, non-phosphorylated markers (specifically allele generated markers) provide the most accurate calibration for PCR product analysis. This study demonstrates that CE offers a high-speed, high-resolution analytical method for accurately determining molecular size and/or allelic type as compared with traditional methodologies.  相似文献   

8.
CE fingerprint methods are commonly used in microbial ecology. We have previously noticed that the position and number of peaks in CE-SSCP (single-strand conformation polymorphism) profiles depend on the DNA polymerase used in PCR [1]. Here, we studied the fragments produced by Taq polymerase as well as four commercially available proofreading polymerases, using the V3 region of the Escherichia coli rss gene as a marker. PCR products rendered multiple peaks in denaturing CE; Taq polymerase was observed to produce the longest fragments. Incubation of the fragments with T4 DNA polymerase indicated that the 3'-ends of the proofreading polymerase amplicons were recessed, while the Taq amplicon was partially +A tailed. Treatment of the PCR product with proofreading DNA polymerase rendered trimmed fragments. This was due to the 3'-5' exonuclease activity of these enzymes, which is essential for proofreading. The nuclease activity was reduced by increasing the concentration of dNTP. The Platinum Pfx DNA polymerase generated very few artifacts and could produce 85% of blunted PCR products. Nevertheless, despite the higher error rate, we recommend the use of Taq polymerase rather than proofreading in the framework for molecular fingerprint studies. They are more cost-effective and therefore ideally suited for high-throughput analysis; the +A tail artifact rate can be controlled by modifying the PCR primers and the reaction conditions.  相似文献   

9.
We report here a simple and efficient method for site-directed mutagenesis using polymerase chain reaction (PCR). In constructing a new expression plasmid for the EcoRI restriction gene, we made two point mutations. While one created a new SalI site prior to the SD sequence, the other replaced Glu144 with Lys. A 1.5 kb SalI-PstI fragment isolated from pER101 was used as the template. Two 25 mer oligonucleotide primers containing the desired mutations were synthesized and used to direct PCR amplification with Taq DNA polymerase. About 0.5 microgram of the 0.49 kb fragment was obtained from 0.05 microgram of the 1.5 kb fragment by carrying out polymerase chain reaction for 30 cycles. As calculated theoretically, 99% of the product contained the desired mutations. The product was cloned into pUC19 using SalI and PstI, two of the transformed colonies were randomly chosen for sequence analysis, and both of them were shown to contain the desired mutations. Finally, the amplified fragment was cloned into pER304 to place the EcoRI (Lys144) gene directly under the control of the lambda PL promoter.  相似文献   

10.
Aptamers are DNA oligonucleotides capable of binding different classes of targets with high affinity and selectivity. They are particularly attractive as affinity probes in multiplexed quantitative analysis of proteins. Aptamers are typically selected from large libraries of random DNA sequences in a general approach termed systematic evolution of ligands by exponential enrichment (SELEX). SELEX involves repetitive rounds of two processes: (i) partitioning of aptamers from non-aptamers by an affinity method and (ii) amplification of aptamers by the polymerase chain reaction (PCR). New partitioning methods, which are characterized by exceptionally high efficiency of partitioning, have been recently introduced. For the overall SELEX procedure to be efficient, the high efficiency of new partitioning methods has to be matched by high efficiency of PCR. Here we present the first detailed study of PCR amplification of random DNA libraries used in aptamer selection. With capillary electrophoresis as an analytical tool, we found fundamental differences between PCR amplification of homogeneous DNA templates and that of large libraries of random DNA sequences. Product formation for a homogeneous DNA template proceeds until primers are exhausted. For a random DNA library as a template, product accumulation stops when PCR primers are still in excess of the products. The products then rapidly convert to by-products and virtually disappear after only 5 additional cycles of PCR. The yield of the products decreases with the increasing length of DNA molecules in the library. We also proved that the initial number of DNA molecules in PCR mixture has no effect on the by-products formation. While the increase of the Taq DNA polymerase concentration in PCR mixture selectively increases the yield of PCR products. Our findings suggest that standard procedures of PCR amplification of homogeneous DNA samples cannot be transferred to PCR amplification of random DNA libraries: to ensure efficient SELEX, PCR has to be optimized for the amplification of random DNA libraries.  相似文献   

11.
Five polymerase chain reaction (PCR) products which could not be reliably typed by allele-specific oligonucleotide (ASO) probing at the human leukocyte antigen (HLA) DQA1 locus were analyzed by polyacrylamide gel electrophoresis and direct sequencing. The first method revealed the preferential amplification of only one of the two alleles in two cases. Direct sequencing of PCR products allowed unambiguous genetic typing but a high number of artifacts was observed. Several of these artifacts occurred in the sequences recognized by the ASOs. This finding provides an explanation for the mistyping in the ASO probing procedure because Taq polymerase errors both created new genetic specificities and eliminated site-specific polymorphisms. Reversed-phase HPLC-MS of the five forensic templates showed a high degree of DNA damage. These data together indicate that the risk of mistyping when using the ASO probing procedure cannot be neglected in the forensic analysis of damaged DNA samples.  相似文献   

12.
The ability of alternative nucleic acids, in which all four nucleobases are substituted, to replicate in vitro and to serve as genetic templates in vivo was evaluated. A nucleotide triphosphate set of 5‐chloro‐2′‐deoxyuridine, 7‐deaza‐2′‐deoxyadenosine, 5‐fluoro‐2′‐deoxycytidine, and 7‐deaza‐2′deoxyguanosine successfully underwent polymerase chain reaction (PCR) amplification using templates of different lengths (57 or 525mer) and Taq or Vent (exo‐) DNA polymerases as catalysts. Furthermore, a fully morphed gene encoding a dihydrofolate reductase was generated by PCR using these fully substituted nucleotides and was shown to transform and confer trimethoprim resistance to E. coli. These results demonstrated that fully modified templates were accurately read by the bacterial replication machinery and provide the first example of a long fully modified DNA molecule being functional in vivo.  相似文献   

13.
Quantification of DNA in a forensic sample is of major importance for proper DNA amplification and STR profiling. Several methods have been developed to quantify DNA, from basic UV spectrometry, through gel-based techniques, to dye staining, blotting techniques, and, very recently, DNA amplification methods (polymerase chain reaction, PCR). Early techniques simply measured total DNA, but newer techniques can specifically measure human DNA while excluding non-human DNA (foodstuff, animal, or bacterial contamination). These newer assays can be faster and less expensive than traditional methods, making them ideal for the busy forensic laboratory. This paper reviews classic and newer quantification techniques and presents methods recently developed by the authors on the basis of PCR of Alu sequences.  相似文献   

14.
Expansion of the genetic alphabet with an unnatural base pair is a long‐standing goal of synthetic biology. We have developed a class of unnatural base pairs, formed between d 5SICS and analogues of d MMO2 that are efficiently and selectively replicated by the Klenow fragment (Kf) DNA polymerase. In an effort to further characterize and optimize replication, we report the synthesis of five new d MMO2 analogues bearing different substituents designed to be oriented into the developing major groove and an analysis of their insertion opposite d 5SICS by Kf and Thermus aquaticus DNA polymerase I (Taq). We also expand the analysis of the previously optimized pair, d NaM –d 5SICS , to include replication by Taq. Finally, the efficiency and fidelity of PCR amplification of the base pairs by Taq or Deep Vent polymerases was examined. The resulting structure–activity relationship data suggest that the major determinants of efficient replication are the minimization of desolvation effects and the introduction of favorable hydrophobic packing, and that Taq is more sensitive than Kf to structural changes. In addition, we identify an analogue (d NMO1 ) that is a better partner for d 5SICS than any of the previously identified d MMO2 analogues with the exception of d NaM . We also found that d NaM –d 5SICS is replicated by both Kf and Taq with rates approaching those of a natural base pair.  相似文献   

15.
The 5'-3' exonuclease activity of DNA polymerase was utilized in the polymerase chain reaction system to generate a specific signal concomitant with amplification. These signals were detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). This method obviates the need to perform extensive DNA purification of reaction products that is often necessary for detecting larger DNA molecules by mass spectrometry. Oligonucleotides complementary to the internal region of the amplicon are degraded by the 5'-3' exonuclease activity and the degradation products are analyzed by MALDI mass spectrometry. We refer to this assay as the Exo-taq assay or probe degradation assay. This method should be amenable to automation.  相似文献   

16.
An 82-base-pair polymerase chain reaction (PCR) product was amplified from the tetranucleotide short tandem repeat locus within the human tyrosine hydroxylase gene. PCR amplification was carried out using 100 ng of human nuclear DNA obtained from an individual who is homozygotic for the 9.3 allele resulting in a 50.5 kDa amplicon. To generate sufficient material for these investigations, several reactions were pooled and subsequently purified and quantified using UV-vis spectrophotometry. A serial dilution was carried out from a 2 μM stock solution providing solution concentrations down to 5 nM. Measurements were made using hexapole accumulation and gated trapping strategies in a 4.7 Telsa Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS) which facilitated detection of the amplicon at the attomole level when electrosprayed from a 5 nM solution with a single acquisition! The signal-to-noise ratio was determined to be 8.3 for the spectrum derived from the 5 nM solution using the magnitude-mode mass spectral peak height for the most abundant charge-state. This remarkable sensitivity for large PCR amplicons will dramatically improve the ability of electrospray ionization mass spectrometry to address important genetic questions for low copy number genes or when the amount of initial template is limited; the latter issue is commonly encountered in DNA forensics. Furthermore, these data represents over 2 orders of magnitude decrease in detection limits over other existing ESI-MS reports concerning PCR products, including those conducted using FTICR-MS.  相似文献   

17.
An 82-base-pair polymerase chain reaction (PCR) product was amplified from the tetranucleotide short tandem repeat locus within the human tyrosine hydroxylase gene. PCR amplification was carried out using 100 ng of human nuclear DNA obtained from an individual who is homozygotic for the 9.3 allele resulting in a 50.5 kDa amplicon. To generate sufficient material for these investigations, several reactions were pooled and subsequently purified and quantified using UV-vis spectrophotometry. A serial dilution was carried out from a 2 microM stock solution providing solution concentrations down to 5 nM. Measurements were made using hexapole accumulation and gated trapping strategies in a 4.7 Telsa Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS) which facilitated detection of the amplicon at the attomole level when electrosprayed from a 5 nM solution with a single acquisition! The signal-to-noise ratio was determined to be 8.3 for the spectrum derived from the 5 nM solution using the magnitude-mode mass spectral peak height for the most abundant charge-state. This remarkable sensitivity for large PCR amplicons will dramatically improve the ability of electrospray ionization mass spectrometry to address important genetic questions for low copy number genes or when the amount of initial template is limited; the latter issue is commonly encountered in DNA forensics. Furthermore, these data represents over 2 orders of magnitude decrease in detection limits over other existing ESI-MS reports concerning PCR products, including those conducted using FTICR-MS.  相似文献   

18.
We demonstrate a new and sensitive amplification technique (referred to as Nested Polymerase Chain Reaction; nPCR). It based on a magnetically actuated circular closed-loop PCR microchip system. nPCR involves the use of two sets of primers in two successive PCR runs, and allows the amplification of a single locus from a minute quantity of template DNA. Two sets of primers are specially designed to a target 500-bp region of the bacteriophage lambda template DNA in the first PCR run, and a 247-bp region of the targeted 500-bp first PCR product in the second PCR run. PCR is run on the microchip system and concurrently in regular thermocycler for comparison. The products are analyzed by conventional agarose gel electrophoresis. The detection limit for the initial template DNA is 1.63?×?105 copies per μL (or 8.67?pg) for the first PCR run, and 1.63 copies per μL (or 0.0867?fg) for the second run. The results are comparable to a regular thermocycler. This preliminary study opens a new gateway to future development of specialized nPCR on chip.
Figure
Nested polymerase chain reaction (nPCR) was first demonstrated on the magnetically actuated circular closed-loop PCR microchip system, using DNA amplification on bacteriophage lambda template DNA as a chemical model.  相似文献   

19.
Recently, KOD and its related DNA polymerases have been used for preparing various modified nucleic acids, including not only base-modified nucleic acids, but also sugar-modified ones, such as bridged/locked nucleic acid (BNA/LNA) which would be promising candidates for nucleic acid drugs. However, thus far, reasons for the effectiveness of KOD DNA polymerase for such purposes have not been clearly elucidated. Therefore, using mutated KOD DNA polymerases, we studied here their catalytic properties upon enzymatic incorporation of nucleotide analogues with base/sugar modifications. Experimental data indicate that their characteristic kinetic properties enabled incorporation of various modified nucleotides. Among those KOD mutants, one achieved efficient successive incorporation of bridged nucleotides with a 2'-ONHCH?CH?-4' linkage. In this study, the characteristic kinetic properties of KOD DNA polymerase for modified nucleoside triphosphates were shown, and the effectiveness of genetic engineering in improvement of the enzyme for modified nucleotide polymerization has been demonstrated.  相似文献   

20.
Lee TM  Carles MC  Hsing IM 《Lab on a chip》2003,3(2):100-105
Microfabricated silicon/glass-based devices with functionalities of simultaneous polymerase chain reaction (PCR) target amplification and sequence-specific electrochemical (EC) detection have been successfully developed. The microchip-based device has a reaction chamber (volume of 8 microl) formed in a silicon substrate sealed by bonding to a glass substrate. Electrode materials such as gold and indium tin oxide (ITO) were patterned on the glass substrate and served as EC detection platforms where DNA probes were immobilized. Platinum temperature sensors and heaters were patterned on top of the silicon substrate for real-time, precise and rapid thermal cycling of the reaction chamber as well as for efficient target amplification by PCR. DNA analyses in the integrated PCR-EC microchip start with the asymmetric PCR amplification to produce single-stranded target amplicons, followed by immediate sequence-specific recognition of the PCR product as they hybridize to the probe-modified electrode. Two electrochemistry-based detection techniques including metal complex intercalators and nanogold particles are employed in the microdevice to achieve a sensitive detection of target DNA analytes. With the integrated PCR-EC microdevice, the detection of trace amounts of target DNA (as few as several hundred copies) is demonstrated. The ability to perform DNA amplification and EC sequence-specific product detection simultaneously in a single reaction chamber is a great leap towards the realization of a truly portable and integrated DNA analysis system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号