首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The dynamics of cosmological models with isotropic matter sources (perfect fluids) is extensively studied in the literature; in comparison, the dynamics of cosmological models with anisotropic matter sources is not. In this paper we consider spatially homogeneous locally rotationally symmetric solutions of the Einstein equations with a large class of anisotropic matter models including collisionless matter (Vlasov), elastic matter, and magnetic fields. The dynamics of models of Bianchi types I, II, and IX are completely described; the two most striking results are the following. (i) There exist matter models, compatible with the standard energy conditions, such that solutions of Bianchi type IX (closed cosmologies) need not necessarily recollapse; there is an open set of forever expanding solutions. (ii) Generic type IX solutions associated with a matter model like Vlasov matter exhibit oscillatory behavior toward the initial singularity. This behavior differs significantly from that of vacuum/perfect fluid cosmologies; hence “matter matters”. Finally, we indicate that our methods can probably be extended to treat a number of open problems—in particular, the dynamics of Bianchi type VIII and Kantowski-Sachs solutions.  相似文献   

2.
We study a class of stochastic Ising (or interacting particle) systems that exhibit a spatial distribution of impurities that change with time. It may model, for instance, steady nonequilibrium conditions of the kind that may be induced by diffusion in some disordered materials. Different assumptions for the degree of coupling between the spin and the impurity configurations are considered. Two interesting well-defined limits for impurities that behave autonomously are (i) the standard (i.e., quenched) bond-diluted, random-field, random-exchange, and spin-glass Ising models, and (ii) kinetic variations of these standard cases in which conflicting kinetics simulate fast and random diffusion of impurities. A generalization of the Mattis model with disorder that describes a crossover from the equilibrium case (i) to the nonequilibrium case (ii) and the microscopic structure of a generalized heat bath are explicitly worked out as specific realizations of our class of models. We sketch a simple classification of transition rates for the time evolution of the spin configuration based on the critical behavior that is exhibited by the models in case (ii). The latter are shown to have an exact solution for any lattice dimension for some special choice of rates.  相似文献   

3.
Analyzing open-source software systems as complex networks   总被引:1,自引:0,他引:1  
Xiaolong Zheng  Huiqian Li 《Physica A》2008,387(24):6190-6200
Software systems represent one of the most complex man-made artifacts. Understanding the structure of software systems can provide useful insights into software engineering efforts and can potentially help the development of complex system models applicable to other domains. In this paper, we analyze one of the most popular open-source Linux meta packages/distributions called the Gentoo Linux. In our analysis, we model software packages as nodes and dependencies among them as edges. Our empirical results show that the resulting Gentoo network cannot be easily explained by existing complex network models. This in turn motivates our research in developing two new network growth models in which a new node is connected to an old node with the probability that depends not only on the degree but also on the “age” of the old node. Through computational and empirical studies, we demonstrate that our models have better explanatory power than the existing ones. In an effort to further explore the properties of these new models, we also present some related analytical results.  相似文献   

4.
Synchronization is defined as interdependencies among coupled dynamic systems. In most coupled systems the intrinsic and internal variants, and the interdependencies among their subsystems are not accessible. Therefore, in order to quantify the interdependencies among the coupled systems, attempts have been made through measuring the synchronization between their outputs represented mostly as time series. In this paper a new method, called Visibility Graph Similarity (VGS), is presented as a method of measuring Generalized Synchronization. First, each time series is reconstructed as a trajectory in a state space. Next, a Distance Time Series (DTS) is created from a sequence of relative distances of the states to a reference state. Subsequently, a visibility graph (VG) is constructed using DTS. Then, a sequence of degrees of the VG, called Degree Sequence (DS), is obtained. Correlation of the DSs of two coupled systems is called VGS and is presented as a measurement of similarity of dynamics of the coupled systems. The synchronization measurement performance of the VGS is compared with synchronization likelihood (SL) and the classical cross correlation method using two identical and non-identical models of two coupled Henon map over the entire time domain. Also, it is compared with SL for tracing temporal synchronization using both models. It is shown that VGS provides a more accurate measure of the overall synchronization compared with SL. It is more reliable for measuring weak couplings compared with the cross correlation method. Moreover, VGS uses fewer parameters and detects the temporal synchronization sooner than the SL.  相似文献   

5.
Summary The scaling of the ratio of the hydrodynamic radius to the radius of gyration of fractal aggregates is probed by numerical simulations for several different algorithms. In common with previous work it is found that this ratio shows a significant and long-lasting finite-size effect for particle-cluster aggregates, but a much less significant finite-size effect for hierarchical cluster-cluster aggregates. Simple theoretical models which reproduce the behaviour are discussed. Paper presented at the I International Conference on Scaling Concepts and Complex Fluids, Copanello, Italy, July 4–8, 1994.  相似文献   

6.
Homogeneous and isotropic models are studied in the Jordan frame of the second order gravity theory. The late time evolution of the models is analysed with the methods of the dynamical systems. The normal form of the dynamical system has periodic solutions for a large set of initial conditions. This implies that an initially expanding closed isotropic universe may exhibit oscillatory behaviour.  相似文献   

7.
Neural network modeling of emotion   总被引:1,自引:0,他引:1  
This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models.Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.  相似文献   

8.
Simple models show that in Type-I intermittency a characteristic U-shaped probability distribution is obtained for the laminar phase length. The laminar phase length distribution characteristic for Type-I intermittency may be obtained in human heart rate variability data for some cases of pathology. The heart and its regulatory systems are presumed to be both noisy and non-stationary. Although the effect of additive noise on the laminar phase distribution in Type-I intermittency is well-known, the effect of neither multiplicative noise nor non-stationarity have been studied. We first discuss the properties of two classes of models of Type-I intermittency: (a) the control parameter of the logistic map is changed dichotomously from a value within the intermittency range to just below the bifurcation point and back; (b) the control parameter is changed randomly within the same parameter range as in the model class (a). We show that the properties of both models are different from those obtained for Type-I intermittency in the presence of additive noise. The two models help to explain some of the features seen in the intermittency in human heart rate variability.  相似文献   

9.
Recent work to understand aggregation of particles using the concept of fractal is reviewed. We introduce all the tools issued from the theory of fractals, and which are useful for our study. Then we define and detail the two main models: the particle-cluster process where individual particles come to stick on large clusters, and the cluster-cluster process where clusters diffuse and stick when they collide. The important parameters of these models are varied and their influence on the resulting geometrical disordered structure is discussed. All along the paper, the connections with existing experiments are given.  相似文献   

10.
We study the dynamic cavity method for dilute kinetic Ising models with synchronous update rules. For the parallel update rule we find for fully asymmetric models that the dynamic cavity equations reduce to a Markovian dynamics of the (time-dependent) marginal probabilities. For the random sequential update rule, also an instantiation of a synchronous update rule, we find on the other hand that the dynamic cavity equations do not reduce to a Markovian dynamics, unless an additional assumption of time factorization is introduced. For symmetric models we show that a fixed point of ordinary Belief propagation is also a fixed point of the dynamic cavity equations in the time factorized approximation. For clarity, the conclusions of the paper are formulated as three lemmas.  相似文献   

11.
This review presents a unified view on the problem of Anderson localization in one-dimensional weakly disordered systems with short-range and long-range statistical correlations in random potentials. The following models are analyzed: the models with continuous potentials, the tight-binding models of the Anderson type, and various Kronig–Penney models with different types of perturbations. Main attention is paid to the methods of obtaining the localization length in dependence on the controlling parameters of the models. Specific interest is in an emergence of effective mobility edges due to certain long-range correlations in a disorder. The predictions of the theoretical and numerical analysis are compared to recent experiments on microwave transmission through randomly filled waveguides.  相似文献   

12.
It is suggested that the question of existence of a jamming phase transition in a broad class of single-lane cellular-automaton traffic models may be studied using a correspondence to the asymmetric chipping model. In models where such correspondence is applicable, jamming phase transition does not take place. Rather, the system exhibits a smooth crossover between free-flow and jammed states, as the car density is increased.  相似文献   

13.
Summary The investigation of the onset of chaos for a dynamical system which models the nonlinear dynamics of particles in anharmonic potential is analytically performed. It is shown that, in the solutions of the ordinary differential equation which describes this system, a range of parameter values exists for which the system has in its dynamics the so-called Smale horseshoe, which is the source of the unstable chaotic motion observed. Furthermore, using the averaging theorem, the stability of the subharmonics is studied.  相似文献   

14.
All evolutional paths for all admissible initial conditions of FRW cosmological models with dissipative dust fluid (described by dark matter, baryonic matter and dark energy) are analyzed using dynamical system approach. With that approach, one is able to see how generic the class of solutions leading to the desired property—acceleration—is. The theory of dynamical systems also offers a possibility of investigating all possible solutions and their stability with tools of Newtonian mechanics of a particle moving in a one-dimensional potential which is parameterized by the cosmological scale factor. We demonstrate that flat cosmology with bulk viscosity can be treated as a conservative system with a potential function of the Chaplygin gas type. We characterize the class of dark energy models that admit late time de Sitter attractor solution in terms of the potential function of corresponding conservative system. We argue that inclusion of dissipation effects makes the model more realistic because of its structural stability. We also confront viscous models with SNIa observations. The best fitted models are obtained by minimizing the χ2 function which is illustrated by residuals and χ2 levels in the space of model independent parameters. The general conclusion is that SNIa data supports the viscous model without the cosmological constant. The obtained values of χ2 statistic are comparable for both the viscous model and ΛCDM model. The Bayesian information criteria are used to compare the models with different power-law parameterization of viscous effects. Our result of this analysis shows that SNIa data supports viscous cosmology more than the ΛCDM model if the coefficient in viscosity parameterization is fixed. The Bayes factor is also used to obtain the posterior probability of the model.  相似文献   

15.
We indicate how one can extend any dynamical system (namely, any system of nonlinearly coupled autonomous ordinary differential equations) so that the extended dynamical system thereby obtained is either isochronous or asymptotically isochronous or multi-periodic, namely its generic solutions are either completely periodic with a fixed period or tend asymptotically, in the remote future, to such completely periodic functions or are multi-periodic (or become multi-periodic only asymptotically, in the remote future). In all cases the scale of the periodicity can be arbitrarily assigned. Moreover, the solutions of the extended systems are generally well approximated by those of the original, unmodified, systems, up to a constant rescaling of the independent variable (time), as long as their evolution is considered over time intervals short with respect to the (arbitrarily assigned) periodicities characterizing the extended systems. Several examples are displayed. In some cases the general solution of these dynamical systems is also exhibited; in others, this is impossible inasmuch as the models being manufactured are extensions of dynamical systems displaying chaotic evolutions, such as, for instance, the well-known Lorenz model of 3 nonlinearly coupled ODEs.  相似文献   

16.
Julien M. Hendrickx 《Physica A》2008,387(21):5255-5262
Krause’s model of opinion dynamics has recently been the subject of several studies, partly because it is one of the simplest multi-agent systems involving position-dependent changing topologies. In this model, agents have an opinion represented by a real number and they update it by averaging those agent opinions distant from their opinion by less than a certain interaction radius. Some results obtained on this model rely on the fact that the opinion orders remain unchanged under iteration, a property that is consistent with the intuition in models with simultaneous updating on a fully connected communication topology.Several variations of this model have been proposed. We show that some natural variations are not order preserving and therefore cause potential problems with the theoretical analysis and the consistence with the intuition. We consider a generic version of Krause’s model parameterized by an “influence function” that encapsulates most of the variations proposed in the literature. We then derive a necessary and sufficient condition on this function for the opinion order to be preserved.  相似文献   

17.
Mirror nodes in growing random networks   总被引:1,自引:0,他引:1       下载免费PDF全文
戴硕  郭云均 《中国物理》2004,13(4):423-427
In this article, we consider mirror nodes, which are widely used to reduce local burden, and present two models that are practical for the Internet and probably some other networks. One model introduces an upper limit to the number of links that a node can have, beyond which the node will share the total links with a newly introduced one. Similarly, in the second model, if the number of links exceeds a limit, a new node will be introduced. Unlike the first model, the new node shares with the old one the chance of receiving new links but not the existing links. These models are analytically treated, and from the degree distribution, we can see that the number of nodes with medium links (half the upper limit) increases at the expense of the loss of highly connected nodes. By reducing the burden, this may improve the robustness of the networks.  相似文献   

18.
Social networks in communities, markets, and societies self-organise through the interactions of many individuals. In this paper we use a well-known mechanism of social interactions — the balance of sentiment in triadic relations — to describe the development of social networks. Our model contrasts with many existing network models, in that people not only establish but also break up relations whilst the network evolves. The procedure generates several interesting network features such as a variety of degree distributions and degree correlations. The resulting network converges under certain conditions to a steady critical state where temporal disruptions in triangles follow a power-law distribution.  相似文献   

19.
We discuss some Abelian lattice gauge models of the noncompact variety, including models of relativistic and nonrelativistic plasmas. For all these models we show absence of exponential clustering for some observables in some domains in parameter space. We comment on the physical meaning of these results, in particular with respect to Debye screening of static electric charges.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号