首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
Abstract— Phototransformation at 2°C of the red-absorbing form of phytochrome (Pr) to the far-redabsorbing form (Pfr) was studied with both undegraded oat ( Avena sativa L., cv. Garry) and undergraded pea Pisum sativum L., cv. Alaska) phytochrome. Phototransformation was initiated by a 15-ns laser pulse with maximum emission near 600 nm and output power of 30 mJ. The first resolvable transformation intermediate exhibited relative to Pr a maximum absorbance increase near 700 nm and was fully present at the earliest time measured, which was 60 ns after the flash. This intermediate absorbance decayed by two reactions for oat phytochrome (half-lives of 11 and 140 μs assuming parallel reactions) and by three for pea phytochrome (half-lives of 14, 280 and 1600 μs assuming parallel reactions). The kinetics of the slowest reaction for pea phytochrome, however, might be somewhat distorted by an instrument artifact. The appearance of the far-red-absorbing phytochrome, as monitored by absorbance increase at 720 nm, occurred by at least two reactions for both oat (half-lives of 47 and 250 ms assuming parallel reactions) and pea (half-lives of 170 and 770 ms assuming parallel reactions) phytochrome. The possibility of slower reactions was not tested. Assays for possible proteolysis of the phytochrome samples studied here indicated that the presence of degraded phytochrome could not account for the observed multiphasic kinetics except possibly for one phase of the triphasic intermediate decay seen with pea phytochrome.  相似文献   

2.
Abstract— –Phototransformation of oat type I phytochrome in vitro from the red-light-absorbing form (Pr) to the far-red-light-absorbing form (Pfr) at physiological temperature (24°C) was investigated with a multichannel transient spectrum analyser. Four sequential intermediates were detected between Pr and Pfr. Absorption spectra of these intermediates suggested that three of them corresponded with the intermediates lumi-R, meta-Ra and meta-Rc detected earlier at low temperature spectroscopy. A new intermediate named meta-Rb was found in the pathway between meta-Ra and meta-Rc. The new intermediate is not identical with meta-Rb previously detected at low temperature. The rate constant of Pfr appearance in isolated oat phytochrome dissolved in buffer containing 5% (vol/vol) glycerol was similar to that of etiolated pea epicotyl tissue.  相似文献   

3.
A custom-built modulated split-beam spectrophotometer has been used to measure the absorbance of tissue samples and purified phytochrome whilst exposing the sample to actinic 633 nm laser radiation at fluence rates approaching those of daylight. This approach has allowed the direct observation of the accumulation of phytochrome photoconversion intermediates at high fluence rates. At ca 1250 μmol m?2 s?1 upwards of 35% of the total phytochrome was present in the form of photoconversion intermediates in tissues of maize, sunflower and tomato. In other tissues tested (wheat, bean and Amaranthus) and in purified oat phytochrome, rather smaller levels of intermediates accumulated. Upon “lights-off” only a proportion of the accumulated intermediates decayed to far-red absorbing phytochrome (Pfr), the remainder appearing as the red-absorbing form (Pr). Difference spectra suggested that, at high light levels, Pr may be reformed via a photochemical back-conversion of an intermediate in the Pr—Pfr pathway, although the involvement of intermediates in the Pfr—Pr pathway cannot be excluded. The implications of the results for the ecological function of phytochrome are discussed.  相似文献   

4.
Abstract— Much of the experimental data in the phytochrome literature has been obtained using a small-molecular-weight protein fragment. Hence, several properties of phototransformation were re-examined using large-molecular-weight rye phytochrome. The kinetics of phototransformation are first-order, both for the conversion of Pr to Pfr and for the reverse reaction. The quantum yield of phototransformation was found to be 0·28 mol Einstein-1 for the conversion of Pr to Pfr and 0·20 mol Einstein-1 for the conversion of Pfr to Pr. Intermediates in phototransformation were measured by cycling the pigment with high-intensity mixed red and far–red light. The difference spectrum of these intermediates between 367 and 575 nm was found to be similar to that previously reported for oat and pea phytochrome. Analysis of intermediate decay indicated complex kinetics and not a single first-order species. Transient absorbancy changes in the blue region of the spectrum upon actinic illumination could be attributed to differential rates of initial bleaching of the two forms of the pigment and a consequent alteration in the proportion of the two forms in the mixture until photostationary equilibrium is re-established.  相似文献   

5.
Fluorescence and photochemical properties of phytochrome from the cyanobacterium Synechocystis were investigated in the temperature interval from 293 to 85 K. The apoprotein was obtained by overexpression in Escherichia coli and assembled to a holophytochrome with phycocyanobilin (PCB) and phytochromobilin (PφB), Syn(PCB)phy and Syn(PφB)phy, respectively. Its red-absorbing form, Pr, is characterized at 85 K by the emission and excitation maxima at 682 and 666 nm in Syn(PCB)phy and at 690 and 674 nm in Syn(PφB)phy. At room temperature, the spectra are blue shifted by 5–10 nm. The fluorescence intensity dropped down by ?15–20-fold upon warming from 85 to 293 K and activation energy of the fluorescence decay was estimated to be ca 5.4 and 4.9 kJ mol?1 in Syn(PCB)phy and Syn(PφB)phy, respectively. Phototransformation of Pr upon red illumination was observed at temperatures above 160–170 K in Syn(PCB)phy and above 140–150 K in Syn(PφB)phy with a 2–3 nm shift of the emission spectrum to the blue and increase of the intensity of its shorter wavelength part. This was interpreted as a possible formation of the photoproduct of the meta-Ra type of the plant phytochrome. At ambient temperatures, the extent of the Pr phototransformation to the far-red-absorbing form, Pfr, was ca 0.7–0.75 and 0.85–0.9 for Syn(PCB)phy and Syn(PφB)phy, respectively. Fluorescence of Pfr and of the photoproduct similar to lumi-R was not observed. With respect to the photochemical parameters, Syn(PCB)phy and Syn(PφB)phy are similar to each other and also to a small fraction of phyA (phyA″) and to phyB. The latter were shown to have low photochemical activity at low temperatures in contrast to the major phyA pool (phyA″), which is distinguished by the high extent (ca 50%) of Pr photoransformation at 85 K. These photochemical features are interpreted in terms of different activation barriers for the photoreaction in the Pr excited state.  相似文献   

6.
Abstract Comparative fluorescence and photochemical studies of phytochrome in etiolated seedlings of maize and in soluble and membrane-containing fractions isolated from them were camed out. The membrane fractions prepared in the absence of Mg2+ from etiolated coleoptiles contained 13% of total photoreversible phytochrome, which was readily solubilized by mild detergents. Its molecular size was indistinguishable from soluble phytochrome and equal to nondegraded maize phytochrome. Low-temperature fluorescence studies with intact tissue found that the position of the emission maximum at 85 K (λmax) and the extent of the phototransformation of the red-absorbing form (Pr) into the first stable photoproduct, lumi-R, at 85 K (γ1), varied in different parts of etiolated seedlings: λmax and γ1 reached their maximum values in the tips of coleoptiles and roots, 686 nm and 0.30–0.40, whereas the lowest values, 682 nm and ca 0.05, were observed in the root base. These parameters correlated well with those obtained for the pigment in the soluble and membrane-containing fractions: 684 and 680 nm, and 0.33 and 0.06, respectively. The extent of the Pr phototransformation into the far red-absorbing form (Pfr) (γ2) did not differ much: values of 0.80–0.85 and 0.70–0.75 correlated with the high and low values of γ1. These variations of the parameters were interpreted in agreement with our previous observations in terms of two phytochrome A species whose relative concentrations vary depending on the experimental conditions—the longer wavelength bulk light-labile species with high γ1 (Pr″), and the shorter wavelength minor light-stable species with low γ1 (Pr″). Close similarity between Pr’and the soluble phytochrome and between Pr″ and the membrane-bound phytochrome points to the possible origin of the native Pr’and PrPrime; species, thus providing evidence for the existence of membrane-bound pigment in the cell.  相似文献   

7.
Studies on the capacity of Pr in uitro to photoconvert to the long wavelength in uioo-like Pfr form were performed with extracts from 10 species. Red irradiation, immediately after extraction of crude extracts from 9 species, photoconverted Pr to long-wavelength Pfr with an absorbance maximum around 735 nm. Red irradiation of soybean extracts, however, photoconverted Pr to short-wavelength Pfr, with an absorbance maximum at 725 nm. Red irradiation given later than 1.5-2 h after extraction, to extracts of oats, pea, cucumber, radish, sunflower and soybean, photoconverted Pr to a short-wavelength Pfr species with an absorbance maximum around 725 nm. In crude extracts of barley, corn, wheat and zucchini, red irradiation, even after a long dark-incubation period at 4°C of up to 48 h, photoconverted Pr to long-wavelength Pfr with an absorbance maximum around 735 nm. After incubation at 25°C for 3 h, however, Pr from barley also photoconverted to the short-wavelength form. It is suggested that in the group exemplified by oats, Pr rapidly undergoes an alteration following extraction, which results in the loss of the capacity of Pr to photoconvert to long-wavelength Pfr. In contrast, in extracts from the group exemplified by barley, Pr is much more stable and retains the capacity to photoconvert to long-wavelength Pfr for much longer periods.  相似文献   

8.
Abstract— The kinetics of the far-red absorbing form of phytochrome (Pfr) appearance from intermediates in the pathway from the red absorbing form of phytochrome (Pr) to Pfr that accumulate under high fluence rate white light have been investigated in 3-day old dark grown Amaranthus caudatus seedlings. The appearance of P(r after a 5 s white light pulse was measured over the temperature range -8 to 25°C in samples flushed with O2 or N2. Over the whole temperature range under anaerobic conditions the kinetics of the slowest component of Pfr appearance are faster than in the presence of O2. Arrhenius plots are linear over this temperature range and indicate the activation energy for the slowest component of Pfr appearance is 44.05 ± 1.97 kJ mol?1 for O2 and 53.69 ± 4.86 kJ mol?1 for N2.  相似文献   

9.
Abstract— The dichroic oriented fraction of the far-red light absorbing form of phytochrome (Pfr) in the green alga Mougeotia was characterized by action spectroscopy. Microbeam irradiations had to be used for the induction of chloroplast movement in Pfr-containing cells, because of the special dichroic absorption characteristics of the red light absorbing form of phytochrome (Pr) and Pfr in the alga. Fluence-response curves were elaborated especially in the far-red spectral region by reverting Pfr to Pr at the flanks of the cells and thus generating Pfr-gradients. Linearly polarized light vibrating perpendicularly to the cell axis was used, thus corresponding to the S,-transition moments of Pfr at the flanks of the cells. The action spectrum is characterized by a peak at approximately 715 nm and a very pronounced decrease towards 728 and 734 nm. The data indicate that the spectral absorption of the active Pfr-fraction in green Mougeotia is shifted towards shorter wavelengths as compared to extracted phytochrome from etiolated or even green higher plants. This "blue shift" seems to be typical for Pfr from green lower plants.  相似文献   

10.
Abstract Fluorescence (F) emission spectra of the red-absorbing phytochrome form (Pr) at 85 K, temperature dependence of the F intensity and the extent of the Pr F changes in the phototransformation of Pr into the first stable photoproduct (lumi-R) at 85 K (γ1,) and into the far-red-absorbing form (Pfr) at 267 K (γ2) were investigated in etiolated shoots and roots of monocots (oat, maize, rice) and dicots (pea, cress). These characteristics monotonously changed as a function of the phytochrome content, [Ptot]: with its decrease to 3-5% of the maximal values, the F spectrum shifts from 686 nm to 682 nm, its half-band width rises from 22 nm to ca 25 nm, temperature dependence of Pr F changes its character, γ1, drops down from ca > 0.45 to ca 0.05-0.10 and γ2 from 0.80–0.82 to ≤0.70. These data were interpreted in terms of two different phytochromes whose relative concentration varies with [Ptot]: (1) a longer wavelength type with the F maximum at 686 nm, low activation energy of the photoreaction (Ea ≤ 3–4 kj/ mol) and high extent of the phototransformation at 85 K (0.49 ± 0.03) and at 267 K (ca 0.85) (Pra); (2) a shorter wavelength type practically inactive at 85 K with F maximum at 682 nm, higher Ea (ca 35 kj/mol) and lower extent of the Pr & Pfr phototransformation (≤0.70) (Pri). [Pra] widely varies in different parts of the seedlings (up to 100 times) and Pra dominates when [Ptot] is high. The [Pri] is much more constant (variations, <10 times), and it becomes the major one when [Ptot] drops down. The two species are likely to belong to the labile (type 1) and stable pools of pigment and not to be connected with the localization of the pigment in the cell since red-far-red preillu-mination, which is believed to bring about sequestering of the pigment, does not change their relative concentration and properties.  相似文献   

11.
The interconvertible photoreactions of recombinant phytochrome from Synechocystis reconstituted with phycocyanobilin were investigated by light-induced optical and Fourier-transform infrared (FT-IR) difference spectroscopy at low temperatures for the first time. The photochemistry was found to be deferred below -100 degrees C for the transformation of red-absorbing form of phytochrome (Pr)-->far-red-absorbing form of phytochrome (Pfr), and no formation of an intermediate similar to the photoproduct of phytochrome A obtained at -140 degrees C (lumi-R) was observed. Two intermediates could be stabilized below -40 degrees C and between -40 and -20 degrees C, and were denoted as meta-Ra and meta-Rc, respectively. Above -20 degrees C Pfr was obtained. In the reverse reaction two intermediates could be stabilized below -60 degrees C (lumi-F) and between -60 and -40 degrees C (meta-F). The FT-IR difference spectra of the late Pr-->Pfr photoreaction show great similarities to the spectra obtained from oat phytochrome A suggesting similar conformation of the chromophore and interactions with its protein environment, whereas deviations in the spectra of meta-Ra were observed. A large band around 1700 cm-1 in the difference spectra between the intermediates and Pr which is tentatively assigned to the C19=O group of the prosthetic group indicates the Z,E isomerization around the C15=C16-methine bridge of the chromophore during the formation of meta-Ra. In the difference spectra of the parent states only small differences are observed in this region suggesting that the frequency of the carbonyl group is similar in Pr and Pfr. Since the FT-IR difference spectra between lumi-F and Pfr show great similarities to the spectra of the parent states, it is assumed that during the formation of lumi-F the chromophore largely returns into the primary Pr conformation. The FT-IR spectra recorded in a medium of 2H2O generally show a downshift of the significant bands due to the isotope effect. The appearance of a characteristic band around 935 cm-1 in all 2H2O spectra suggests an assignment to an N-2H bending vibration of the chromophore.  相似文献   

12.
STUDIES ON THE PROTEIN CONFORMATION OF PHYTOCHROME   总被引:7,自引:0,他引:7  
Abstract— The extinction coefficients for large rye phytochrome were found to be: Fluorescence and circular dichroism spectra of large- and small-molecular-weight rye phytochrome give no evidence for a protein conformational change on phototransformation of phytochrome. The large molecule has a fluorescence emission peak at 331 nm when excited at 290 nm, and an excitation peak for this emission at 288 nm. The circular dichroism spectra indicate that large rye phytochrome has about 17–20% a-helix content, 30%β-structure and 50% random coil, and that the small rye phytochrome has about 10–13%α-helix content. The ultraviolet difference spectra for large and small rye phytochrome are similar and differ from the difference spectrum of the small oat phytochrome in the relative size of the 296–298 nm peak. The difference spectra may reflect changes in chromophore absorbance and in the environment of amino acid residues near the chromophore, particularly of tyrosine, and perhaps of tryptophan and cysteine.  相似文献   

13.
Sporulation of the true slime mold Physarum polycephalum (Myxomycetales) can be triggered by the far-red/red reversible Physarum phytochrome. Physarum plasmodia were analyzed with a purpose-built dual-wavelength photometer that is designed for phytochrome measurements. A photoreversible absorbance change at 670 nm was monitored after actinic red (R) and far-red (FR) irradiation of starved plasmodia, confirming the occurrence of a phytochrome-like photoreceptor in Physarum spectroscopically. These signals were not found in growing plasmodia, suggesting the Physarum phytochrome to be synthesized during starvation, which makes the cells competent for the photoinduction of sporulation. The photoconversion rates by R and FR light were similar in the phytochromes of Physarum and etiolated oat shoots. In dark-grown Physarum plasmodia that had not been preexposed to any light only R induced a detectable absorbance change while FR did not. This indicates that most (at least 90%) of the photoreversible pigment occurs in the red-absorbing form. Since the effectiveness of FR in triggering sporulation was enhanced by preirradiation with R, it is concluded that at least part of the Pr can be photoconverted to the active Pfr photoreceptor species. We propose a kinetic mechanism for the photocontrol of sporulation by photoconversion of Pfr, which may also hold for the high-irradiance response to FR in Arabidopsis and Cuscuta.  相似文献   

14.
Abstract— Phototransformation from the red-absorbing form of phytochrome (Pr) to the far-red-absorbing form occurs via at least two reaction stages. We report here on the photoactivity of the intermediates present during these two stages, as detected with 114/118-kdalton Avena phytochrome by a transient spectrum analyzer with two actinic lasers of microsecond duration. Flash activation of intermediates present during the first stage results in their photoconversion back to Pr within the time resolution provided by the analyzer, which is 10 μs. Since these intermediates are present within 60 ns of excitation of Pr (Cordonnier et al. , 1981), a single flash of ms duration as used here should yield a photostationary equilibrium between them and Pr. The proportion of Pr converted to intermediates by a single saturating flash is estimated to be about 30%. Flash activation of intermediates present during the second stage converts them to another transient intermediate stage, which decays thermally to Pr within 2 ms.  相似文献   

15.
Abstract— Two different yeast expression systems, Pichia pastoris and Hansenula polymorpha, are compared for their capability to express in functional form the 65 kDa N-ter-minal portion of oat phytochrome A (phyA, spanning amino acids 1-595). The front half of phytochrome was selected for this investigation because it exhibits a greater stability than the full-length protein, and it harbors full spectroscopic and kinetic properties of phytochrome, allowing an exact proof of the functional integrity of the recombinant material. In the comparison between the two expression systems used, special emphasis was given to optimizing the yield of the expression and to improving the quality of the expressed material with respect to the proportion of functional protein. From identical volumes of cell culture, H. polymorpha synthesized between 8- and 10-fold more functional protein than P. pastoris. Following the observation by Wu and Lagarias (Proc. Natl. Acad. Sci. USA 93, 8989-8994,1996) that P. pastoris endogenously produces the chromophore of phytochrome, phytochromobilin (PpHB) in significant amounts that leads to formation of spectrally active phytochrome during expression, the invention of an alternative high-yield expression system was strongly demanded. A Histag was attached to the C-terminus of the recombinant protein, which allows for a convenient and efficient purification and selects the full-length proteins over translationally truncated peptides. Fully reconstituted chromo-proteins showed an A660A280 ratio of 1.2, indicating the high degree of reconstitutable apoprotein obtained by this procedure. The assembly between apoprotein and the chromophore phycocyanobilin when followed time-resolved yielded a time constant (obs) of 35 s. The λmax values of the red-(Pr) and the far red-absorbing (Pfr) forms of phytochrome (665 and 729 nm) of the recombinant 65 kDa chromopeptide, reconstituted with PcjiB are nearly identical to those of native full-length oat phytochrome. The kinetic parameters of the affinity-purified 65 kDa phytochrome chromoprotein for the Pr I700 Pfr conversion are compared to those of the recombinant 65 kDa chromoprotein, lacking the His-tag and to wild-type oat phytochrome. Referring to wild-type phytochrome allows determination of whether the recombinant material has lost spectral properties during the purification procedure. The decay of the primary intermediate (I700) occurs with nearly the same time constant for the His-tagged chromoprotein and for the reference (110 and 90 mUs, respectively). The formation of the Pfr form was fitted with three exponentials in both the His-tagged and the reference chromoprotein with the middle component being slightly smaller and the longest component being remarkably larger for the His-tagged protein (1.5, 10 and 300 ms) than for the reference (1.4, 18 and 96 ms). This selective slowing down of the long kinetic component in the millisecond time range may be indicative of stronger interactions between protein domains involving the C-terminus that in the His-tagged form exhibits increased polarity.  相似文献   

16.
PHOTOTRANSFORMATIONS OF PHYTOCHROME   总被引:6,自引:0,他引:6  
Abstract— –Phytochrome is the photoreversible chromoprotein that controls many aspects of plant growth and development Phototransformations of the red absorbing form (Pr) and the far red absorbing form (Pfr) involve initial photoreactions followed by dark relaxation reactions. Techniques for the study of intermediates of phototransformation and the present picture of intermediates involved in the phototransformations of Pr and Pfr are outlined. The molecular natures of the phototransformations are reviewed in relationship to knowledge of the chemistry of the chromophore and apoprotein. The significance of phytochrome intermediates in understanding the physiology of phytochrome controlled responses is discussed.  相似文献   

17.
The kinetics of the polymerization of acrylamide in aqueous solution and CTAB micellar solution initiated by sodium sulfite has been investigated with the theory and method of thermokinetics for n order reactions with equal concentration in this paper. The influence of initiator and CTAB concetrations on molecular weight of polyacrylamide has been discussed.The second—order rate constants of this reaction at 30 and 40°C in aqueous solution are 0. 112and 0. 0262dm3 mol-1s_1, respectively. The activation energy,based on measurements at these two temperatures,is 66. -4kJ mol-1. The ratio k2√n in CTAB micellar solution is smaller than that in aqueous solution. The rate of forming radical in micellar solution has been decreased.  相似文献   

18.
Transient UV/Vis absorption spectroscopy is used to study the primary dynamics of the ring‐A methyl imino ether of phycocyanobilin (PCB‐AIE), which was shown to mimic the far‐red absorbance of the Pfr chromophore in phytochromes (R. Micura, K. Grubmayr, Bioorg. Med. Chem. Lett.­ 1994, 4, 2517–2522 ). After excitation at 615 nm, the excited electronic state is found to decay with τ1=0.4 ps followed by electronic ground‐state relaxation with τ2=1.2 and τ3=6.7 ps. Compared with phycocyanobilin (PCB), the initial kinetics of PCB‐AIE is much faster. Thus, the lactim structure of PCB‐AIE seems to be a suitable model that could not only explain the bathochromic shift in the ground‐state absorption but also the short reaction of the Pfr as compared to the Pr chromophore in phytochrome. In addition, the equivalence of ring‐A and ring‐D lactim tautomers with respect to a red‐shifted absorbance relative to the lactam tautomers is demonstrated by semiempirical calculations.  相似文献   

19.
Ultraviolet resonance Raman spectra of phytochrome in the red light-absorbing form (Pr) and the far-red light-absorbing form (Pfr) are reported. The spectra excited at 240-nm provide structural information about the protein part of phytochrome. The protein contains only a very small amount of β-sheet structure and most of the tyrosine side chains are located in hydrophobic environments. Indole rings of tryptophan (Trp) interact with neighboring groups in the Pr form and these interactions become weaker with the conversion from Pr to Pfr. Some Trp side chains of Pfr are surrounded by aliphatic groups but such is not the case in Pr. These changes in the environment occur at the same time as changes in orientation of Trp side chains. Our observations suggest that interactions between Trp residues and the tetrapyrrolic chromophore occur in the Pr form and that the strength of these interactions diminishes in the Pfr form.  相似文献   

20.
Abstract. Phototransformation kinetics of 124-kDa oat phytochrome at 298 K after a red (660-nm) laser flash excitation were recorded at different wavelengths. The kinetics of the dark relaxation processes for lumi-R to Pfr can be satisfactorily described by only 3 rate constants: k = 28000 s-1 370 s-1 and 20 s-1. The first rate constant is due to the decay of lumi-R to meta -Ra. The latter two rate constants correspond to processes establishing the far-red (>700 nm) absorption band. No meta -Rb could be detected. From the wavelength dependency of the amplitudes of these two rates, parallel pathways in the formation of Pfr could be excluded. A unique sequential pathway for the dark relaxation leading to Pfr seems to be an intrinsic property of 124-kDa phytochrome, however. Assuming a sequential pathway, molar extinction coefficients for intermediates have been calculated. These values agree with molar extinction coefficients obtained from low-temperature spectra. The process with a rate constant of 370 s-1 corresponds to absorbance changes for the formation of meta -Rc from meta -Ra and the rate constant of 20 s-1 describes the absorbance changes due to the transformation of meta -Rc to Pfr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号