首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 533 毫秒
1.
2.
Supercritical fluid chromatography (SFC) sometimes exhibits GC-like behavior and sometimes LC-like behavior, depending on conditions. However, it is not always clear whether one of these types of behavior, or a combination, operates for a particular set of conditions for every solute in a mixture. For example, some components may be partitioned mostly by their vapor pressures, while others, in the same mixture, are partitioned predominantly by solvent-like properties of the mobile phase. Plots of retetion (as log of the capacity factor) vs. reciprocal temperature at constant pressure reveal a clear change in the character of the separation of well-behaved solutes. A thermodynamic explanation of the observed behavior is given, based on the assumption that partitioning is controlled by the heats of solution of solute in the mobile and stationary phases. A model of SFC retention as it deviates from pure-GC behavior on the same column is presented.  相似文献   

3.
Fritless packed silica gel columns were prepared using sol‐gel technology. A part of a 75 μm i.d. fused silica capillary was filled with a mixture of tetramethoxysilane and poly(ethylene glycol). After gelling at 40°C and heating at 300°C, the resultant silica gel was derivatized with dimethyloctadecylchlorosilane. A scanning electron micrograph of a cross‐section of the capillary column showed that the gel took the form of a spherical particle aggregate and adhered to the column inner wall. The column performance was evaluated for electrochromatography using acetonitrile–50 mM HEPES buffer (pH 6.6) (60/40 or 40/60, v/v) as the mobile phase. An electroosmotic flow of 1.0 mm/s was generated with (60/40, v/v) acetonitrile/HEPES buffer at a field strength of 546 V/cm. Using a sol‐gel‐derived packed column at an electroosmotic flow of 0.5 mm/s, efficiencies of up to 1.1×105 plates/m were obtained for retained solutes.  相似文献   

4.
Tocochromanols consisting of tocopherols and tocotrienols, is collectively known as vitamin E. Similarity in their structures, physical and chemical properties rendered the tocochromanols to be subject of chromatography interest. Supercritical fluid chromatography is a highly efficient tool for the separation and analysis of tocochromanols. Separation and analysis of tocochromanols using supercritical fluid chromatography had been carried out in the past using capillary or packed columns. Each of these techniques offer their own advantages and drawbacks. Besides being used for analysis, packed column supercritical fluid chromatography found applications as a purification and content enrichment tool. Emergence of new equipment and stationary phase technologies in recent years also helped in making supercritical fluid chromatography a highly efficient tool for the separation and analysis of tocochromanols. This paper gives an insight into the use of capillary and packed columns in supercritical fluid chromatography for the separation and/or analysis of tocochromanols. The types of stationary phase used, as well as chromatographic conditions are also discussed.  相似文献   

5.
Instrumentation was assembled that allows the use of supercritical ammonia as mobile phase in capillary supercritical fluid chromatography. Several modifications of the typical chromatographic system were necessary, especially with respect to injection and detection. In addition, the stabilities of various polysiloxane stationary phases were studied. The chromatography of polarizable and polar basic materials was demonstrated using a nonpolar polysiloxane stationary phase.  相似文献   

6.
The application of fluid extraction in combination with fluid chromatography with packed column and flame ionization detection is described. Fluid chromatographic equipment is shown. Applications of this system to drug characterization are demonstrated.  相似文献   

7.
8.
Summary Stainless steel columns (internally mirror-finished, 125 or 250nm in length, of bore 1.0 or 1.6mm) were slurry-packed with 5μm and 4μm reversed phase silicas (Hypersil ODS, LiChrosorb RP-8 and RP-18 and Superspher RP-8. The HPLC equipment consisted of a pump LC5A (Shimadzu) or a pump 2150 (LKB Instruments), a rheodyne valve 7413 with loops of 0.5, 1.0 and 5.0mm3 and a Jasco-Uvidec 100-II UV detector, variously with one of three specially constructed cells of 0.2, 0.4 and 1.3mm3 volume. Columns were assembled using two types of coupling device employing a stainless steel capillary of 0.12mm bore. The effect of sample volume, design of coupling device in assembled column, detector cell volume and geometry on column plate count was examined to optimize the conditions and the instrument compartments. The highest efficiency for the assembled columns was achieved by use of the 0.2mm3 detector cell, a low dead volume coupling device and a 0.5μl sample volume. Sets of 5 assembled columns gave reduced plate height values between 2–3 at a reduced velocity 2<v<3, indicating that extra-column effects were negligibly small; the performance was identical to that of conventional analytical columns. Presented at the 15th International Symposium on Chromatography, Nürnberg, October 1984  相似文献   

9.
Recent advances in microcolumn (capillary) Liquid chromatography and open tubular supercritical fluid chromatography are reviewed. New detection and ancillary techniques are emphasized. Further trends of capillary separations are briefly discussed.  相似文献   

10.
11.
The performance of a type of micropacked column for the quantitative SFC analysis of samples containing solutes at very different concentrations has been studied. The chromatographic characteristics of the column were compatible with high sample volume loadability, and at the same time adequate efficiency and low pressure drop. In order to increase both the separating power and sample capacity of the column, the percentage liquid phase loading was optimized. The accuracy, precision, and detection limit obtainable with the micropacked column are compared with the performance of a wall coated open tubular capillary column having the same phase ratio.  相似文献   

12.
The present paper compares the potential of high pressure packed column gas chromatography, with a particle size in the range of 30–80 μm and conventional packed column GC. with that of thick film capillaries for obtaining the maximum loadability at a given performance in efficiency and speed of separation. An alternative treatment, discussing the maximum efficiency of the three column types at normalized loadability and speed of separation is given. Known and established relationships describing plate height, loadability, and linear velocity are used to arrive at the said comparisons. The conclusion of the paper indicates a reconsideration of packed column GC for particular types of analyses where large amounts or high concentrations are required in the detection step.  相似文献   

13.
A versatile system with a slurry-packed capillary column was developed for supercritical fluid chromatography, which is capable of programming both inlet and outlet pressure independently, as well as using a restrictor to apply back pressure. This system revealed the relationships between pressure drop, flow rate, and linear velocity in pressure-programmed supercritical fluid chromatography. In the restrictor system, both the pressure drop and the flow rate increased almost linearly with inlet pressure, while under conditions of constant pressure drop characteristic behavior was observed which depended on the density-viscosity relationships of supercritical fluid. Resolution in the separation of polysiloxane oligomers was found to be increased by increasing the ratio of pressure drop to pressure-programming rate, although the sensitivity decreased due to the increase in peak volume. The system controlling both inlet and outlet pressure has distinct advantages over the restrictor system controlling both inlet and outlet pressure has distinct advantages over the restrictor system in practical in practical operations.  相似文献   

14.
This article describes and critically evaluates a complete method for the quantitation of PCB in sediment samples. The extraction and clean-up procedure is described. Packed column and capillary column results are compared. Capillary column quantitation yields lower values for total PCB loading. Preferences for capillary column quantitation are discussed and explained. Capillary quantitation is based on the combination of an external Aroclor standard and an internal decachlorobiphenyl standard for normalizing data. In light of the recent report of synthesis of all 209 PCB congeners a suggestion is made to use these as absolute standards to establish a bank of primary standard Aroclors.  相似文献   

15.
A simple method for the determination of betaine, l ‐carnitine, and choline in human urine was developed based on column‐switching ion chromatography coupled with nonsuppressed conductivity detection by using a self‐packed column. A pretreatment column (50 mm × 4.6 mm, id) packed with poly(glycidyl methacrylate‐divinylbenzene) microspheres was used for the extraction and cleanup of analytes. Chromatographic separation was achieved within 10 min on a cationic exchange column (150 mm × 4.6 mm, id) using maleic anhydride modified poly(glycidyl methacrylate‐divinylbenzene) as the particles for packing. The detection was performed by ion chromatography with nonsuppressed conductivity detection. Parameters including column‐switching time, eluent type, flow rates of eluent, and interfering effects were optimized. Linearity (r 2 ≥ 0.99) was obtained for the concentration range of 0.50–100, 0.75–100, and 0.25–100 μg/mL for betaine, l ‐carnitine, and choline, respectively. Detection limits were 0.12, 0.20, and 0.05 μg/mL for betaine, l ‐carnitine, and choline, respectively. The intra‐ and interday accuracy and precision for all quality controls were within ±10.11%. Satisfactory recovery was observed between 92.5 and 105.0%. The validated method was successfully applied for the determination of betaine, l ‐carnitine, and choline in urine samples from healthy people.  相似文献   

16.
Within this review, we thoroughly explored supercritical fluid chromatography (SFC) columns used across > 3000 papers published from the first study carried out under SFC conditions in 1962 to the end of 2022. We focused on the open tubular capillary, packed capillary, and packed columns, their chemistries, dimensions, and trends in used stationary phases with correlation to their specific interactions, advantages, drawbacks, used instrumentation, and application field. Since the 1990s, packed columns with liquid chromatography and SFC-dedicated stationary phases for chiral and achiral separation are predominantly used. These stationary phases are based on silica support modified with a wide range of chemical moieties. Moreover, numerous unconventional stationary phases were evaluated, including porous graphitic carbon, titania, zirconia, alumina, liquid crystals, and ionic liquids. The applications of unconventional stationary phases are described in detail as they bring essential findings required for further development of the supercritical fluid chromatography technique.  相似文献   

17.
18.
A simple interface between a capillary supercritical fluid chromatograph and an Extranuclear Simulscan mass spectrometer is described. The SFC column is directly inserted into the ion source through the existing GC-interface. The system is equipped with a splitting device which allows simultaneous EI/MS and flame ionization detection when CO2 is used as the supercritical phase. The effect of source temperature and pressure on CO2 clustering was studied for optimization of source conditions. The performance of the system was evaluated with a series of model compounds and standard mixtures.  相似文献   

19.
Traditionally the majority of fractionation columns in natural gas processing plants were equipped with trays. However an option to trayed columns is to use packing. Packed columns offer a larger surface area per unit volume for mass transfer and the continuous gas to liquid contact throughout the column rather than at specific levels (such as in tray columns). For process design purposes, it is essential to estimate the pressure drop for enabling the proper operation of packed columns. In this study, a simple generalized pressure drop correlation (GPDC) which is easier than existing approaches requiring more complicated and longer computations is developed for sizing randomly packed fractionation columns for pressure drops up to 150 mm water per meter of packing. This correlation can be used to estimate pressure drop for a given loading and column diameter. Alternatively, for a given pressure drop the diameter can be determined. The predictions from the proposed correlation have been compared with reported data and found good agreement with average absolute deviation hovering around 4.9%. The proposed predictive tool is superior owing to its accuracy and clear numerical background, wherein the relevant coefficients can be retuned quickly if new and more accurate data are available in the future. This proposed simple-to-use approach can be of immense practical value for the engineers and scientists to have a quick check on the pressure drop in packed columns for a given loading and column diameter. In particular, gas engineers would find the proposed approach can be used very friendly involving no complex expressions with transparent and easy-to-handle calculation steps.  相似文献   

20.
Capillary columns of 0.3–0.35 mm internal diameter and 0.3–7.7 m length, packed with 3 to 30 μm octadecylsilica stationary phases as used for liquid chromatography, were applied to gas chromatographic separation of low boiling hydrocarbons. Van Deemter plots for these columns showed the optimum column efficiency to occur at linear velocities of 4–5 cm/s. A short column was applied to the rapid separation of components of a natural gas and impurities in standard gases, while a long column was applied to the separation of complex mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号