首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Reactions of atomic oxygen with isocyanic acid (HNCO) have been studied in incident and reflected shock wave experiments using HNCO/N2O/Ar mixtures. Quantitative time-histories of the NH(X3Σ?) and OH(X2Πi) radicals were measured behind the shock waves using cw, narrow-linewidth laser absorption at 336 nm and 307 nm, respectively. The second-order rate coefficients of the reactions: and were determined from early-time NH and OH formation rates, with least-squares two-parameter fits of the results given by: and cm3 mol?1 s?1. The minimum and maximum rate constant factors (?,F) define the lower and upper uncertainty limits, respectively. An upper limit on the rate coefficient of was determined to be: .  相似文献   

2.
The formation enthalpies were ascertained from the solution enthalpies in 2 n NaOH resp. 2 n NaOH + 1% H2O2. The results of equilibrium measurements in the systems give the formation enthalpies and standard entropies: . The value of the standard entropy of the gaseous MoOCl4 was estimated to be 91 (±3) cl. From the enthalpies and entropies of sublimation the values were obtained.  相似文献   

3.
3,3-Dimethylbutanol-2 (3,3-DMB-ol-2) and 2,3-dimethylbutanol-2 (2,3-DMB-ol-2) have been decomposed in comparative-rate single-pulse shock-tube experiments. The mechanisms of the decompositions are The rate expressions are They lead to D(iC3H7? H) – D((CH3)2(OH) C? H) = 8.3 kJ and D(C2H5? H) – D(CH3(OH) CH? H) = 24.2 kJ. These data, in conjunction with reasonable assumptions, give and The rate expressions for the decomposition of 2,3-DMB-1 and 3,3-DMB-1 are and   相似文献   

4.
The kinetics of the thermal reaction between CF3OF and C3F6 have been investigated between 20 and 75°C. It is a homogeneous chain reaction of moderate length where the main product is a mixture of the two isomers 1-C3F7OCF3 (68%) and 2-C3F7OCF3 (32%). Equimolecular amounts of CF3OOF3 and C6F14 are formed in much smaller quantities. Inert gases and the reaction products have no influence on the reaction, whereas only small amounts of oxygen change the course of reaction and larger amounts produce explosions. The rate of reaction can be represented by eq. (I): The following mechanism explains the experimental results: Reaction (5) can be replaced by reactions (5a) and (5b), without changing the result: Reaction (4) is possibly a two-step reaction: For ∣CF3 = ∣C3F6∣, ν20°C = 36.8, ν50°C = 24.0, and ν70°C = 14.2.  相似文献   

5.
The reactions have been studied competitively over the range of 28–182°C by photolysis of mixtures of Cl2 + C2F5I+ CH4. We obtain where θ = 2.303RT J/mol. The use of published data on reaction (2) leads to log (k1cm3/mol sec) = (13.96 ± 0.2) ? (11,500 ± 2000)/θ.  相似文献   

6.
H2S accelerates the thermal isomerization of cis-2-pentene (P2c) to 1-pentene (P1) and trans-2-pentene (P2t) to around 800 K. This effect is interpreted on the basis of a free radical mechanism in which 2-pentenyl and thiyl radicals are the main chain carriers. P1 formation is essentially explained by the competing processes: P2t formation is due to addition-elimination processes: the importance of which has been evaluated against process (?4μ): The following ratios of rate constants have been measured and are discussed: (RT in cal mol?1).  相似文献   

7.
On Chalcogenolates. 121. Studies on N-Cyanomonothiocarbimic Acid. 1. Synthesis and Properties of Alkali Metal N-Cyanomonothiocarbimates The hitherto unknown N-cyanomonothiocarbimates M2[SOC?N? CN] · H2O, where M = Na, K, Rb, Cs, have been prepared by reaction of the corresponding alkali metal salt of cyanamide with COS. N-Cyanomonothiocarbimates react with sulfur to form the ion, which gives with an acid and with CH3I the methyl compound . The reaction of the latter compound with H2O2 yields . All compounds have been characterized by means of diverse methods.  相似文献   

8.
The reaction of iodine with allyl alcohol has been studied in a static system, following the absorption of visible light by iodine, in the temperature range 150-190°C and in the pressure range 10-200 torr. The rate-determining step has been found to be and k3 is consistent with the equation From the activation energy and the assumption E-3 = 1 ± 1 kcal mol?1, it has been calculated that kcal mol?1. The stabilization energy of the hydroxyallyl radical has been found to be 11.4 ± 2.2 kcal mol?1.  相似文献   

9.
Solution Thermodynamics of FeCl2 in Molten Mixtures of Alkaline Chlorides and LaCl3 or CeCl3 Activity coefficients and the chemical excess potential of FeCl2 dissolved in molten chloride mixtures were determined by EMF measurements with galvanic cells of the type in the concentration range from 0.01–5 mole-% at 720 and 820°C. An average cationic potential is defined and used to calculate a distance parameter () for the different solvent melt mixtures. may be estimated by equations of the type   相似文献   

10.
On Chalcogenolates. 126. Studies on N-Cyanformamidino Dithiocarbimic Acid. 2. Thermal Behaviour of Potassium N-Cyanformamidino Dithiocarbimate in Solution The thermal treatment of K2[S2C?N? C(NH2)?N? CN] in methanolic solution yields . The semi-hydrate has been isolated. It reacts with acid to form The reaction with H3CI gives The compounds have been characterized by means of electron absorption, 1H- and 13C-N.M.R., infrared, and mass spectra.  相似文献   

11.
The reactions of NH(X3Σ) with NO, O2, and O have been studied in reflected and incident shock wave experiments. The source of NH in all the experiments was the thermal dissociation of isocyanic acid, HNCO. Time-histories of the NH(X3Σ) and OH(X2Π) radicals were measured behind the shock waves using cw, narrow-linewidth laser absorption at 336 nm and 307 nm, respectively. The second-order rate coefficients of the reactions: were determined to be: and cm3 mol−1 s−1, where ƒ and F define the lower and upper uncertainty limits, respectively. The branching fraction of channel defined as k3b/k3total, was determined to be 0.19 ± 0.10 over the temperature range of 2940 K to 3040 K.  相似文献   

12.
The thermal decomposition of ammonia was studied by means of the shock-tube and vacuum ultraviolet absorption spectroscopy monitoring the concentration of atomic hydrogen. The rate constants of both the initiation reaction and the consecutive reaction were determined directly as and respectively.  相似文献   

13.
The gas-phase photochlorination (λ = 436 nm) of the 1,1,1,2-C2H2Cl4 has been studied in the absence and the presence of oxygen at temperatures between 360 and 420°K. Activation energies have been estimated for the following reaction steps: The dissociation energy D(CCl3CHCl? O2) ± (24.8 ± 1.5) kcal/mole has also been estimated from the difference in activation energy of the direct and reverse reactions The mechanism is discussed and the rate parameters are compared to those obtained for a series of other chlorinated ethanes.  相似文献   

14.
The kinetics and mechanism of ascorbic acid (DH2) oxidation have been studied under anaerobic conditions in the presence of Cu2+ ions. At 10?4 ≤ [Cu2+]0 < 10?3M, 10?3 ≤ [DH2]0 < 10?2M, 10?2 ≤ [H2O2] ≤ 0.1M, 3 ≤ pH < 4, the following expression for the initial rate of ascorbic acid oxidation was obtained: where χ2 (25°C) = (6.5 ± 0.6) × 10?3 sec?1. The effective activation energy is E2 = 25 ± 1 kcal/mol. The chain mechanism of the reaction was established by addition of Cu+ acceptors (allyl alcohol and acetonitrile). The rate of the catalytic reaction is related to the rate of Cu+ initiation in the Cu2+ reaction with ascorbic acid by the expression where C is a function of pH and of H2O2 concentration. The rate equation where k1(25°C) = (5.3 ± 1) × 103M?1 sec?1 is true for the steady-state catalytic reaction. The Cu+ ion and a species, which undergoes acid–base and unimolecular conversions at the chain propagation step, are involved in quadratic chain termination. Ethanol and terbutanol do not affect the rate of the chain reaction at concentrations up to ≈0.3M. When the Cu2+–DH2–H2O2 system is irradiated with UV light (λ = 313 nm), the rate of ascorbic acid oxidation increases by the value of the rate of the photochemical reaction in the absence of the catalyst. Hydroxyl radicals are not formed during the interaction of Cu+ with H2O2, and the chain mechanism of catalytic oxidation of ascorbic acid is quantitatively described by the following scheme. Initiation: Propagation: Termination:   相似文献   

15.
The kinetics of the gas phase pyrolysis of dimethyl sulfide (DMS) was studied in a static system at 681–723 K by monitoring total pressure-time behavior. Analysis showed the pressure increase to follow DMS loss. The reaction follows two concurrent paths: with a slow, minor, secondary reaction: In a seasoned reactor the reaction follows a 3/2 order rate law with rate coefficient given by with θ = 2.303 RT in kcal/mol. A free radical mechanism is proposed to account for the data and a theoretical rate coefficient is derived from independent data: which agrees well with the experimental one over the range studied. The reaction is initiated by Me2S → Me + MeS? and propagated by metathetical radical attack on Me2S. C2H4 is formed by an isomerization reaction which may in part be due to a hot radical: Thermochemical data are listed, many from estimations, for both molecular and radical species of interest in the present system.  相似文献   

16.
A mixture of Br2 + HBr + C2F5I was photolyzed in the vapor phase. The reaction forms C2F5 radicals which are removed by Competitive studies over the range of 74–146°C gave ratios of k10/k9, and these were combined with values obtained previously by different methods at higher temperatures upto 515°C to give where θ = 2.303RT J/mol. A value is assigned to the activation energy E10, and this, with other data, leads to at 25°C. This result is in excellent agreement with two previous independent determinations.  相似文献   

17.
The reactions of O3 with CH3ONO and C2H5ONO were studied using infrared absorption spectroscopy in a static reactor at temperatures between 298 and 352K. Both reactions followed simple second-order kinetics forming the corresponding nitrate: The rate coefficients are given by .  相似文献   

18.
The kinetics of the gamma-radiation-induced free radical chain reaction in solutions of C2Cl3F in cyclohexane (RH) was investigated over a temperature range of 87.5–200°C. The following rate constants and rate constant ratios were determined for the reactions: In competitive experiments in ternary solutions of C2Cl4 and C2Cl3F in cyclohexane the rate constant ratio k2c/k2a was determined By comparing with previous data for the addition of cyclohexyl radicals to other chloroethylenes it is shown that in certain cases the trends in activation energies for cyclohexyl radical addition can be correlated with the C? Cl bond dissociation energies in the adduct radicals.  相似文献   

19.
The high temperature kinetics of NH in the pyrolysis of isocyanic acid (HNCO) have been studied in reflected shock wave experiments. Time histories of the NH(X3Σ?) radical were measured using a cw, narrow-linewidth laser absorption diagnostic at 336 nm. The second-order rate coefficients of the reactions: (1) were determined to be: cm3?mol?1?s?1, where f and F define the lower and upper uncertainty limits, respectively. The data for k1a are somewhat better fit by:   相似文献   

20.
The reaction H + CH3OOH was investigated under conditions of excess atomic hydrogen concentration using a flow reactor attached to a photoionization mass spectrometer. The rate coefficient of the reaction was determined as The three important reaction channels were found to be with the individual contributions determined as indicated. The product methoxy and methylperoxy radicals react mainly with atomic hydrogen under the employed experimental conditions according to where the estimates for the percentage contributions of the various channels were derived from the measured product yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号